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What is machine learning

• A collection of algorithms (PCA, SVM, Random Forest, 
Boosting Trees, Neural Network …) that let computer 
learn patterns themselves. 

• Keywords: Data driven; Functional; Optimize; Software 
2.0;           

• Minimize 𝑙𝑜𝑠𝑠[𝑓(𝑥,  𝜃),  𝑦] → 𝑓

Input

Program
output

Input

Output
Program

Traditional Machine learning

computer computer
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Applications of machine learning
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ML for HEP

• In May 2014, ATLAS held Kaggle competition: 
Higgs Boson Machine Learning Challenge

• Goal: distinguish Higgs signal from exotic 
background

• The winner uses ensemble of neural networks
• In this competition, TianQi Chen and Tong He 

developed XGBoost, which became the most 
popular ML tool on Kaggle!

• Boosted trees and deep neural network are the 
most frequently used ML tools in HEP.

Higgs Boson Discovery with Boosted Trees. TQ Chen and T He, HEPML 2014
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A single decision tree

Task: Asian girl?

Score: 2

Black 
Hair

Black 
Eyes

Y

Y

N

N

Score: 0.5

Score: 0.1

Splitting nodes are chosen to minimize the MSE, entropy or Gini factor.
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Ensemble of trees: random forest (in parallel)

Black 
Hair

Speak 
Chinese

Live in 
China

Score: 3 Score: 2 Score: 5

Tree 1 Tree 2 Tree 3

IsAsian(      ) = 3 + 2 + 5  Low variance
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Ensemble: boosted decision tree (in sequential)

Black Hair
Speak 

Chinese
Live in 
China

Score: 2 Score: 3 Score: 5

Tree 1 Tree 2 Tree 3

Train to correct the residual of the previous tree.
Low bias.
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Higgs identification using deep learning (DL)

P.Baldi,P.Sadowski,& D.Whiteson, Nature Commun.5, 4308 (2014) 

Signal

Background

“Our analysis shows that recent advances 
in deep learning techniques may lift 
these limitations by automatically 
discovering powerful non-linear feature 
combinations and providing better 
discrimination power than current 
classifiers – even when aided by manually-
constructed features.”
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DL: neural net with multiple hidden layers

10



How does deep neural network learn: back propagation
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SGD in 1D
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Simple	example	
			Equation:	 	
			Gradient:	 	

 

					
				 :	learning	rate,	a	small	

positive	number

      L(𝜃) = 𝜃2

      ∇𝜃L(𝜃) = 2𝜃

−𝑙𝑟 ∇𝜃𝐿(𝜃) = − 2𝑙𝑟 𝜃{ > 0,   𝜃 < 0
< 0,   𝜃 > 0

𝑙𝑟 

𝜃  = 𝜃  −  𝑙𝑟 ⋅ ∇𝜃  𝐿(𝜃)



SGD + Momentum 
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SGD SGD + Momentum

 𝑣𝑡 = 𝛽𝑣𝑡−1 + 𝑙𝑟∇𝜃𝐿(𝜃)
𝜃 = 𝜃 − 𝑣𝑡

𝜃  = 𝜃  −  𝑙𝑟 ⋅ ∇𝜃  𝐿(𝜃)



Trap in local minimum? No
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P(Local Minimum) ~  
where n is the num of trainable parameters

Usually n > 1 million 

𝟎 . 𝟓𝒏

Quora	Session:	one	theoretical	puzzle	is	why	
the	type	of	non-convex	optimization	that	
needs	to	be	done	when	training	deep	neural	
nets	seems	to	work	reliably.	

LeCun	states:	
Local	minima	do	not	arise	in	very	high	
dimensional	space	

It’s	hard	to	build	a	box	in	100	million	
dimensions.



Convolution Network (reduce parameters)

Densely connected Locally connected Locally connected
and sharing weights

1D convolution
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QUARK GLUON PLASMA
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相对论重离子碰撞实验

LHC ALICE
CMS

LHCb ATLAS

LHC 27km

RHIC  美国BNL国家实验室：	

• 30多个国家/地区 

• 一千多名科学家和工程师 

LHC  欧洲核子中心	
• 100多个国家/地区	
• 一万多名科学家和工程师

27公里

实验主要目标：核物质新形 

态，核物质相变临界点

RHIC BRAHMS
PHOBOS

PHENIXSTAR

AGS

TANDEMS 3.8公里

～99.99%光速

～99.9999%光速 18



QCD Phase diagram
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夸克胶⼦等离⼦体

普通核物质



Forward process in high energy nuclear physics
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夸克胶⼦等离⼦体

普通核物质

庞⻰刚，H.Petersen,XN	Wang,	PRC97(2018)no.6,064918

Non-equilibrium dynamical evolution：For given initial 
condition and nuclear equation of state, solve relativistic 
hydrodynamics numerically and compare the final hadron 
spectra from model with experimental measurements.

Where  is energy-momentum tensor，  is energy density， is pressure 
given by EoS，  is fluid velocity，  is metric and  is shear stress tensor.

We developed CLVisc which is a (3+1)D viscous hydro parallelized on GPU 
using OpenCL (100 times speed up)

Tμν ε P
uμ gμν πμν



CLVisc vs heavy ion collision data
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Transverse	momentum	distribution

Longitudinal	momentum	distribution
Fourier	decomposition	coef.		
for	azimuthal	angle	



Inverse problem：decode QCD EoS and initial state from data

22

Determining the QGP Properties via a 
Model to Data Comparison

experimental data:
π/K/P spectra
yields vs. centrality & beam
elliptic flow
HBT
charge correlations & BFs
density correlations

Model Parameter:
eqn. of state

shear viscosity
initial state

pre-equilibrium dynamics
thermalization time

quark/hadron chemistry
particlization/freeze-out

1.Entangled features and physical parameters
2.Degenerate output

模型参数 ⼈⼯特征



Deep Learning for nuclear EoS

Long	Gang	Pang,	K.	Zhou,	N.	Su,	H.	Petersen,	H.	Stoecker,	X-N	Wang,		
Nature	communications	(2018)	

(1) Nuclear EoS is encoded in the final state output
(2) Deep learning helps to decode this signal 
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ML interpretability：the most important region for EoS classification
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LongGang Pang                 Identifying QCD transition using deep learning 

�*-,/1�+!#�*�-�$,/�1#01'+%�"�1�0#1
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• Importance regions are different for different testing datasets 

• eta/s introduces a small difference

GROUP 1 GROUP 2



Optimal network for given data structure
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Gluon 喷注 Quark 喷注

[G. Louppe, K. Cho, C. Becot, K. Cranmer, arXiv: 1702.00748; 
Taoli Cheng, Comput Softw Big Sci (2018) 2: 3

Recurrent Net Recursive Net



Better network architecture for particles
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• Images:	histograms		
• (px,	py)	or	(pt,	phi)		
• (px,	py,	pz)	
• (pt,	phi,	eta)	

• Point	cloud:	particle	list	

E Px Py Pz pid

6.84 1.07 4.5 6.83 211

68.92 0.75 0.64 68.91 2212

40.4 0.06 0.54 40 321

…

Convolution network is optimal for images
Point Cloud network is better for particle in 

momentum space



Point cloud network for EoS classification

27J.	Steinheimer,	L.G.	Pang,	K.	Zhou,	V.	Koch,	H.	Stoecker,	J.	Randrup,	2019,	JHEP



Dynamical edge convolution to capture more local correlations
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Latent Variable as liquid-gas phase transition order parameter

29



Nuclear deformation using HIC

34-layer residual network predicts the absolute 
value of nuclear deformation
L	G	Pang,	K	Zhou,	X	N	Wang,	arXiv:1906.06429 30



arXiv: 1801.03334; NPA2018, H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song 

Deep learning relativistic hydro

600 times speed up .vs. 60 times speed up on GPU

31



ML interpretability：1. ablation
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将输⼊图像中的像素或超像素替换掉, 输⼊神经⽹络，观察⽹
络预测结果的变化，按变化幅度制作重要性地图。

E.g., LIME, prediction difference analysis



ML interpretability：2. class activation map
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将最后⼀个卷积层（学到了抽象、整体的特征）的特征地图
映射到输⼊图像中



Uncertainty measure：1. Bayes Neural Network

34
Replace weights with distributions，to get ensemble of infinity

 number of networks

Weight Uncertainty in Neural Networks 2015



Uncertainty measure：2. Monte Carlo Dropout

35
Ensemble of networks through dropout

Apply dropout during both training and testing.
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Nuclear mass prediction
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• WS4+RBF (RMS 170 keV): Ning Wang, Min Liu, Xizhen Wu and Jie Meng, Phys. Lett. B 734 (2014) 215

http://dx.doi.org/10.1016/j.physletb.2014.05.049


RBF/KRR for nuclear mass prediction
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• Radial Basis Function is a powerful way for 
function interpolation

• Usually RBF are trained on mass residual

δ(Z, N) = Mexp − Mth



WS4 + RBF + FOURIER TRANSFORM
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1. The deviations are large 
for low Z and N 
frequencies for all semi-
empirical models, 
corrected by RBF

2. High frequency part for 
odd-even nuclei due to 
pairing effect, difficult for 
RBF



WS4 + RBF + Odd-even correction: RMS 138 keV

40Odd-even staggering of nuclear mass are high frequency, considered separately.    



MLP (4-hidden layers)

41
Nuclear	mass	predictions	using	neural	networks:	application	of	the	multilayer	
perceptron	(2021):	RMS	>	1	MeV



Our result (preliminary)：training data
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Correlation analysis
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0 20
Z Valence

°8

°7

B
E
/AC12 =

⟨δx1δx2⟩

⟨δx2
1⟩⟨δx2

2⟩

• Pearson correlation analysis found strong 
correlation between the mass residual, Magic 
Numbers and number of valence nucleons



Correlation analysis
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0 5 10
Protons on valence shell 3
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°7
B
E
/A

0 5
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0 20
Protons on valence shell 6
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B
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Mass residual prediction
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• 26-feature input: Z, N, A, 7 Z shells, 8 N shells, pairing term, 
surface term, volume term, magic Z, magic N, valence Z, 
valence N

• For 3 features，Z, N, A



New data from AME2020 which are not in training dataset
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Other studies
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1. Nuclear mass predictions based on Bayesian neural network 
approach with pairing and shell effects (Z. M. Niu and H. Z. Liang)
2. NIU ZM, FANG J, NIU YF. Comparative study of radial basis 
function and Bayesian neural network approaches in nuclear 
mass predictions. 2019. Physical Review C. 100.  
3. New extrapolation method for predicting nuclear masses 
(C.Ma, M.Bao, Z.M. Niu, Y.M.Zhao, A. Arima)
4. Machine learning the nuclear mass (Zepeng Gao, Y.J. Wang, 
H.L. Lv, Q.F. Li, C.W. Shen)
5. Bayesian extraction of incomplete fission yield (ZiAo Wang, 
J.C. Pei, Y. Liu,  Q.Yu)
6. The description of giant dipole key parameters with multi-task 
neural network (JingHu Bai, Z.M. Niu, B.Y. Sun, Y.F. Niu)
7. …
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DEEP LEARNING FOR NUCLEAR 
MATRIX ELEMENTS THROUGH 

(1) WAVE FUNCTIONS
(2) SAMPLING
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Solving Schrodinger Eqs: no wf
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2

output

input

conv 7

fc 1

loss

conv 1

conv 1a

conv 1b

conv 2

conv 2a

conv 2b

conv 3

conv 3a

conv 3b

conv 4a

conv 4b

conv 5

conv 5a

conv 5b

conv 6

conv 6a

conv 6b

potential
energy

conv 4 fc 2

features
labels

reducing
convolutions

non-reducing
convolutions

256×256 128×128 64×64 32×32 16×16 8×8 4×4 2×2
layer height/width

FIG. 1. In this work, we use the machinery of deep learning to learn the mapping between potential and energy, bypassing the
need to numerically solve the Schrödinger equation, and the need for computing wavefunctions. The neural network architecture
we used (shown here) consisted primarily of convolutional layers, with two fully-connected layers at the top.

mands of a large artificial neural network by employing
many sequential layers, forming a hierarchy of feature
detection [32]. Deep neural networks have proven invalu-
able in high-energy physics, allowing physicists to sift
through massive amounts of experimental data and clas-
sify events e�ciently and automatically [33–35]. Deep
neural networks are known to be particularly well suited
to data rooted in physical origin [36, 37]. Many recent
successes involve a specific class of deep neural network
known as convolutional neural networks. Inspired by
models of the animal visual cortex [38], convolutional
neural networks are well suited to applications where the
input data features can be represented in some form of
spatially-correlated data structure, such as the pixels of
an image [39]. Convolutional neural networks have re-
peatedly performed well in the areas of handwriting and
object classification [9, 40–42]. Applications in the field
of electronic structure, however, are few, although recent
work focused on training against a geometric matrix rep-
resentation looks particularly promising [43].

Developing a deep learning model involves both the
design of the network architecture and the acquisition of
training data. The latter is the most important aspect of
a machine learning model, as it defines the transferability
of the resulting model. We investigated four classes of
potentials: simple harmonic oscillators (SHO), “infinite”
wells (IW, i.e. “particle in a box”), double-well inverted
Gaussians (DIG), and random potentials (RND). Each
potential can be thought of as a grayscale image: a 256⇥
256 grid of floating-point numbers.

We implemented a standard finite-di↵erence [44]
method to solve the eigenvalue problem

Ĥ ⌘ (T̂ + V̂ ) = " (1)

for each potential V we created. The potentials were
generated with a dynamic range suitable to emit ground-

FIG. 2. Wavefunctions (probability density) | 0|2 and the
corresponding potentials V (r) for two random potentials.

state energies in the range of approximately 0 to 400
mHa. With the random potentials, special care was taken
to ensure that some training examples produced non-
trivial wavefunctions (Fig. 2). Atomic units are used,
such that h̄ = me = 1. The potentials are represented
on a square domain from �20 to 20 a.u., discretized on
a 256 ⇥ 256 grid. As the simple harmonic oscillator po-
tentials have an analytic solution, we used this as refer-
ence with which to validate the accuracy of the solver.
The median absolute error between the analytic and the
calculated energies for all simple harmonic oscillator po-
tentials was 0.12 mHa. We discuss the generation of all
potentials further in the Supplementary Information.

The simple harmonic oscillator presents the simplest
case for a convolutional neural network as there is an an-
alytic solution dependent on two simple parameters (kx
and ky) which uniquely define the ground-state energy
of a single electron ("0 = h̄

2 (
p
kx +

p
ky)). Furthermore,

these parameters represent a very physical and visible
quantity: the curvature of the potential in the two pri-
mary axes. Although these parameters are not provided
to the neural network explicitly, the fact that a simple

, by K. Mills, M. Spanner, Tamblyn (February 7, 2017)
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FIG. 4. Histograms of the true vs. predicted energies for each example in the test set indicate the performance of the various
models. The insets show the distribution of error away from the diagonal line representing perfect predictions. A 1 mHa2

square bin is used for the main histograms, and a 1 mHa bin size for the inset histogram. During training, the neural network
was not exposed to the examples on which theses plots are based. The higher error at high energies in (d) is due to fewer
training examples being present the dataset at these energies. The histogram shown in (d) is for the further-trained model,
described in the text.

FIG. 5. Histograms of the true vs. predicted energies for the
model trained on the (a) kinetic energy, and (b) excited-state
energy of the double-well inverted Gaussian.

potentials, it is impressive that the convolutional neural
network was able to learn how to predict the energy with
such a high degree of accuracy.

Now that we have a trained model that performs well
on the random test set, we investigated how this trained
model transfers to the other classes of potentials. The
model trained on the random dataset is able to predict
the ground-state energy of the double-well inverted Gaus-
sian potentials with a MAE of 2.94 mHa. We can see
in Fig. 5(c) that the model fails at high energies, an
expected result given that the model was not exposed
to many examples in this energy regime during training
on the overall lower-energy random dataset. This mod-
erately good performance is not entirely surprising; the
production of the random potentials includes an element
of Gaussian blurring, so the neural network would have
been exposed to features similar to what it would see in
the double-well inverted Gaussian dataset. However, this
moderate performance is testament to the transferability
of convolutional neural network models.

The total energy is just one of the many quantities
associated with these one-electron systems. To demon-
strate the applicability of deep neural network to other
quantities, we trained a model on the first excited-state

energy "1 of the double-well inverted Gaussian poten-
tials. The model achieved a MAE of 10.93 mHa. We
now have two separate models capable of predicting
the ground-state, and first excited-state energies, respec-
tively, demonstrating that a neural network can learn
quantities other than the ground-state energy.
The ground-state and first excited-state are both eigen-

values of the Hamiltonian. Finally, we investigated the
training of a model on the expectation value of the ki-
netic energy, hT̂ i = h 0|T̂ | 0i, under the ground state
wavefunction  0 that we computed numerically for the
random potentials. Since Ĥ and T̂ do not commute,
the prediction of hT̂ i can no longer be summarized as
an eigenvalue problem. The trained model predicts the
kinetic energy value with a MAE of 2.98 mHa. While
the spread of testing examples in Fig. 5(a) suggests the
model performs more poorly, the absolute error is still
small.
In summary, convolutional deep neural network are

likely particularly well suited for electronic structure cal-
culations as they are designed for data which has a spatial
encoding of information. For this case, even though our
convolutional neural network produces a highly accurate
result, and does so much faster than our likely less-than-
optimal finite-di↵erence numerical solver, the time-to-
solution is su�ciently small in absolute terms that the ap-
plication of a convolutional neural network is not revolu-
tionary. However, as the number of electrons in a system
increases, the computational complexity grows polynomi-
ally. Accurate electronic structure methods (e.g. coupled
cluster) exhibit a scaling with respect to the number of
particles of N

7 and even the popular Kohn-Sham for-
malism of density functional theory scales as N3 [47, 48].
The evaluation of a convolutional neural network exhibits
no such scaling, and while the training process for more
complicated systems would be more expensive, this is a
one-time cost.
In this work, we have taken a simple problem (one elec-

tron in a confining potential), and demonstrated that a

https://arxiv.org/pdf/1702.01361.pdf


DeepWF: anti-symmetric trial wave-function using neural network
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a↑ (r↑) = ∏
1≤i<j≤N↑

a↑
0 (ri, rj)

a↑
0 (ri, rj) = Net↑anti (ri, rj, |rji |) − Net↑anti (rj, ri, |rji |)

Ψ(r; R) = S(r; R)A↑ (r↑) A↓ (r↓)

Solving many-electron Schrödinger equation using deep neural network 
JiequnHan LinfengZhang WeinanE 

Build	physical	a	prior	into	the	neural	network,	e.g.,	anti-symmetric,	vortical	free,		
divergence	free,	translational	invariant	(equivalent),	rotational	symmetry

https://www.sciencedirect.com/science/article/pii/S0021999119306345?via%3Dihub#!


• Similar idea as 
DeepWF

• Avoids the use of a 
finite basis set

• Accuracy close to 
chemical accuracy 
(1 kcal/mol)

Fermi-Net: 
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• Flow model: 
reversible, 
bijection , 
generation model

• Use flow model to 
speed up sampling 
that are gauge 
invariant by 
construction 

Flow model + MCMC for Lattice
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Summary
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1. Machine learning is widely used in high and low 
energy nuclear physics

2. It becomes popular in ab initio calculations in 
computational chemistry 

3. Deep learning may help the NME calc in 2 ways
•  Trial wave function using network
•  Speed up sampling 


