JUNO-0νββ实验规划

温良剑 中国科学院高能物理研究所

无中微子双贝塔衰变研讨会,中山大学(珠海),2021.05

Neutrino-less Double Beta Decay

Determining the nature - Dirac or Majorana - of massive neutrinos is one of the most challenging and pressing problems in present day elementary particle physics

Schechter-Valle Theorem (1982) : if a $0\nu\beta\beta$ decay happens, there must be an effective Majorana mass term (ν is of Majorana nature)

$0\nu\beta\beta$ offers the most sensitive and only feasible probe to determine if neutrinos are Majorana neutrinos

- Discovery of a new type of elementary particles
- Discovery of LNV: a guide for theorists
- MajoranaCP Phases

Effective Majorana mass m_{BB}

$$m_{\beta\beta} = m_1 |U_{e1}|^2 e^{i\rho} + m_2 |U_{e2}|^2 + m_3 |U_{e3}|^2 e^{i\sigma}$$

Measure the $0\nu\beta\beta$ decay's lifetime, then convert it into the $|m_{\beta\beta}|$

The nuclear matrix element, $|M^{0\nu}|$, has large uncertainty

Different isotopes correspond to vastly different experimental techniques

- Ultra-low external background
- Good energy resolution
- Large detector volume

Present best Limits:

- ^{136}Xe (KamLAND-Zen): $T_{1/2} > 10^{26}$ yrs
- ⁷⁶Ge (GERDA): $T_{1/2} > 10^{26}$ yrs
- ¹³⁰Te (CUORE): $T_{1/2} > 3 \times 10^{25}$ yrs

Future goal:

- ~2 orders of magnitude improvement in $T_{1/2}$
- Covers Inverted v-mass ordering region
- An aggressive experimental goal

Ovββ is the most sensitive to determine <u>neutrino</u> masses Osci. Expts : Determine v mass ordering ³H β -decay : $m_{\beta} \le 40 \text{ meV}$ (e.g. Project-8) Cosmology : $\Sigma \le 80 \text{ meV}$ Ov $\beta\beta$ decay : $|m_{\beta\beta}| \approx 10 \text{ meV}$ (e.g. nEXO) $|m_{\beta\beta}| \approx 1 \text{ meV}$ (JUNO- $\beta\beta$)

江门中微子实验

8

JUNO

江门中微子实验

Vertical shaft

Slope tunnel entrance

- 中微子质量顺序
- 精确测量中微子混合
- 超新星中微子
- 地球中微子
- 太阳中微子
- 大气中微子
- 核子衰变
- 超预期发现?

江门中微子实验 更远的未来

最灵敏的中微子绝对质量 测量 (~ meV) ;

最灵敏地寻找0vββ衰变 以确定中微子是Dirac 还 是 Majorana 粒子

中微子振荡:	确定质量顺序	未来实验
氚贝塔衰变:	$m_{\beta} \leq 40 \mathrm{meV}$	灵致度
宇宙学:	$\Sigma \le 80 \text{ meV}$	
双贝塔衰变:	$ m_{\beta\beta} \approx 10 \text{ meV}$	(美国nEXO)
	$ m_{\beta\beta} \approx 1 \text{ meV}$	(江门二期)

JUNO-ββ设想

在江门中微子探测器 的中间置入一个气球, 填充掺入¹³⁰Te的液体 闪烁体(~2030年)

	核素	质量(吨)	<m<sub>ββ>, meV</m<sub>
KamLAND-Zen	¹³⁶ Xe	1	61-165
EXO	¹³⁶ Xe	0.2	93-286
nEXO	¹³⁶ Xe	5	7-22
GERDA	⁷⁶ Ge	1	10-40
Majorana	⁷⁶ Ge	1	10-40
SNO+	¹³⁰ Te	8	19-46
JUNO-ββ	¹³⁶ Xe	50	4-12
	¹³⁰ Te	100-200	2-6 ?

Chin. Phys. C 41 (2017) 053001

最大的靶质量 最好的液闪屏蔽 极好的能量分辨率 (3%/√E)

利用大型液闪探测器寻找0νββ

JUNO-ββ (~1800 m.w.e) Chin. Phys. C 41 (2017) 053001 THEIA (4300 m.w.e) Eur. Phys. J. C (2020) 80:416

1千吨

780吨

SNO+

(~6000 m.w.e)

2万吨

THEIA-25(2.5万吨) 探测器计划部署在 DUNE四个洞室之一;

未来计划THEIA-100 (10万吨)探测器

Kam	LAN	D-Zer	1
(~2	700 r	n.w.e)	

SNO+ (~6000 m.w.e)

~3% ^{enr}Xe (2011 - Today) 0.5% ^{nat}Te (2020) 2.5% ^{nat}Te (2026) JUNO-ββ (~1800 m.w.e) Chin. Phys. C 41 (2017) 053001

3% ^{enr}Xe (~90% in ¹³⁶Xe) OR 5% ^{nat}Te THEIA (4300 m.w.e) Eur. Phys. J. C (2020) 80:416

> **3%** ^{enr}Xe (89.5% in ¹³⁶Xe) OR 5% ^{nat}Te

^{nat}Te: natural Tellurium (34.1% in ¹³⁰Te) ^{enr}Xe: enriched Xenon (~90% in ¹³⁶Xe,不同实验略有差别)

KamLAND-Zen

KLZ-800灵敏度(2020): > 8×10²⁵ yrs

KLZ-800 (5年): >5×10²⁶ yrs

KamLAND2-Zen: > 2×10²⁷ yrs

SNO+

试运行

(47% full@2020.04)

> 2×10²⁶ yrs

0.5% loading (3年):

2.5% loading (4年):

> 1×10²⁷ yrs

JUNO-ββ

THEIA (THEIA-25: 25 kton) (THEIA-100: 100 kton)

Eur. Phys. J. C (2020) 80:416

50吨¹³⁶Xe (5年):

Chin. Phys. C 41 (2017) 053001

> 1.8×10²⁸ yrs

¹³⁰Te是候选,可容纳 百吨,未做详细计算。 49.5吨¹³⁶Xe (10年): ><mark>2.0×10²⁸ yrs</mark>

~31.4吨¹³⁰Te (10年): >1.1×10²⁸ yrs 15

技术挑战: 掺0νββ核素 (Xe或Te) 液闪纯化

		²³⁸ U (g/g)	²³² Th (g/g)
	KamLAND (2002 osci. RPL)	~3.5 x 10 ⁻¹⁸	~5.2 x 10 ⁻¹⁷
	KamLAND (2005 thesis for PRL)	~3.4 x 10 ⁻¹⁸	~8.7 x 10 ⁻¹⁷
	KamLAND (2008 thesis for PRL)	~2.7 x 10 ⁻¹⁸	~6.1 x 10 ⁻¹⁷
	KamLAND (2015 solar)	5 x 10 ⁻¹⁸	1.3 x 10 ⁻¹⁷
1 kton	KamLAND-Zen (2013 PRL)	1.3 x 10 ⁻¹⁶	1.8 x 10 ⁻¹⁵
780 ton	SNO+ (2020)	10 ⁻¹⁵	10 ⁻¹⁶
20 kton	JUNO (baseline case)	10 ⁻¹⁵	10 ⁻¹⁵
太阳中微子、0νββ 🖛	- JUNO (ideal case)	10-17	10 ⁻¹⁷
	THEIA (target)	10 ⁻¹⁷	10 ⁻¹⁷

References:

Phys. Rev. C. 85.045504, Phys. Rev. C 92, 055808 (2015), Phys. Rev. Lett.90.021802, Phys. Rev. Lett. 117.082503, Phys. Rev. C.84.035804, KamLAND Ph.D. theses, Eur. Phys. J. C (2020) 80:41, talks at NEUTRINO2020

技术挑战:制作干净的Balloon

Balloon film backgrounds:

 $\label{eq:sigma} \begin{array}{ll} ^{238}\text{U}\sim3\times10^{-12}\text{ g/g} & \times10\text{ reduction compared} \\ ^{232}\text{Th}\sim4\times10^{-11}\text{ g/g} & \text{to KLZ 400 mini-balloon} \end{array}$

KLZ-800制作的第一个Inner balloon (2014-2016) 有漏,拆除后重新做 (2017.5-2018.4), 2018.5安装

• Outer balloon (R=6.5 m)

Azusa Gando @ Neutrino2018 Christopher Grant@ Neutrino2020

R=1.9 m

²³⁸U ~ 18 ppt, ²³²Th ~ 14 ppt。 尼龙薄膜球极易吸附灰尘。

R=6 m

液袋方案曾是江门中心探测器 备选方案之一(2015.7之前)。 研制了直径12米的原型。

另一种可能性:全部20kton液 闪掺入0νββ核素

尽管JUNO探测器岩石覆盖 (~700 m) 不如Kamioka、SNOLab,但对宇宙线缪子有很强的Tracking能力,可实现精细的反符合判选去掉宇生本底

Table A9. The estimated rates for cosmogenic isotopes in JUNO LS by FLUKA simulation, in which the oxygen isotopes are neglected. The decay modes and Q values are from TUNL Nuclear Data Group [475].

Isotopes	Q (MeV)	$T_{1/2}$	Rate (per day)
³ H	0.0186 (<i>β</i> ⁻)	12.31 year	1.14×10^4
⁶ He	3.508 (^{β-})	0.807 s	544
⁷ Be	$Q_{EC} = 0.862 \ (10.4\% \ \gamma, E_{\gamma} = 0.478)$	53.22 d	5438
⁸ He	10.66 ($\beta^-\gamma$: 84%), 8.63 (β^-n : 16%)	0.119 s	11
⁸ Li	16.0 (β ⁻)	0.839 s	938
⁸ B	$16.6 \ (\beta^+)$	0.770 s	225
⁹ Li	13.6 (β ⁻ : 49%), 11.94 (β ⁻ n: 51%)	0.178 s	94
°C	15.47 ($\beta^+ p$: 61.6%, $\beta^+ \alpha$: 38.4%)	0.126 s	31
¹⁰ Be	0.556 (β ⁻)	1.51e6 year	1419
¹⁰ C	2.626 ($\beta^+\gamma$)	19.29 s	482
¹¹ Li	20.55 (β ⁻ n : 83%, β ⁻ $2n$: 4.1%)	0.00875 s	0.06
¹¹ Be	11.51 ($\beta^-\gamma$: 96.9%), 2.85 ($\beta^-\alpha$: 3.1%)	13.76 s	24
¹¹ C	0.960 (<i>β</i> ⁺)	20.36 min	1.62×10^4
¹² Be	11.708 ($\beta^-\gamma$, β^-n : 0.5%)	0.0215 s	0.45
¹² B	13.37 $(\beta^-\gamma)$	0.0202 s	966
¹² N	16.316 $(\beta^+\gamma)$	0.0110 s	17
¹³ B	13.437 $(\beta^{-}\gamma)$	0.0174 s	12
¹³ N	$1.198 \ (\beta^+)$	9.965 min	19
¹⁴ B	20.644 ($\beta^-\gamma$, β^-n : 6.1%)	0.0126 s	0.021
¹⁴ C	0.156 (β ⁻)	5730 year	132
¹⁵ C	9.772 (β ⁻)	2.449 s	0.6
¹⁶ C	8.010 (β ⁻ n: 99%)	0.747 s	0.012
¹⁶ N	10.42 ($\beta^{-}\gamma$)	7.130 s	13
¹⁷ N	8.680 (β ⁻ γ: 5%), 4.536 (β ⁻ n: 95%)	4.173 s	0.42
¹⁸ N	13.896 (β ⁻ γ: 93%), 5.851 (β ⁻ n: 7%)	0.620 s	0.009
Neutron	— J. Phys. G43:030401	(2016)	155 000

- 掺碲(Te)液闪是可行的方案, 在国重实验室支持下已开展预研
 - 研究新的Te-化合物合成方法
 - 实现一步将碲化合物溶入液闪→利于 批量生产和纯化
- 目标:
 - natTe质量占比: 3%
 - 极低放射性: ~10⁻¹⁷ g/g
 - 光产额、透明度与现有液闪相当
 - 长期稳定性: >10年
- •研发规划:
 - <2025年:完成掺碲液闪配方研究
 - <2028年: 解决大规模生产工艺、 光学纯化、放射性纯化工艺

For a none background-free experiment, use simple counting approach:

Re-define Background Index (B.I.) and Detector Exposure

$$B_I = \frac{b}{(M\epsilon\eta \cdot t/M_{isotope}) \cdot \text{ROI}}$$

$$M_{norm} = \frac{M\epsilon\eta \cdot t}{\text{ROI} \cdot M_{isotope}}$$

background index in ROI/(10-3 cnts/keV/mol/yr)

ROI定义为FWHM: 效率75.8%

THEIA (水基液闪技术)

为寻找0vββ的探测器配置: 90% PMT覆盖; 能量分辨3%/√E; R=8m的Balloon, 盛装掺 Xe或掺Te液闪; LS纯度要求与JUNO一致

- 至2030年, KamLAND/SNO+实验可能将 T^{0νββ} 灵敏度 提高至10²⁷ 年
- 2030年,计划将JUNO改造为0νββ实验,用百吨量级
 ¹³⁰Te,将灵敏度再提高>20倍, m_{ββ} 灵敏度逼近meV
 - 技术路线明确, 且极具挑战
 - 预期2025年左右解决Te-LS关键技术

KamLAND-Zen

Mini-balloon:

- 25-µm-thick nylon film (durable)
- Fabricated in class-1 clean room
- Highly transparent (~99% at 400 nm)

Xenon loading:

- Chemically stable (noble gas)
- Good solubility (3.2% wt in LS)
- Removable from LS
- Purification is well-established

91% enriched ¹³⁶Xe loaded in LS inside mini-balloon (Q value = 2.4578 MeV)

July 1, 2020

Neutrino 2020

Christopher Grant@Neutrino2020

Period	Concentration	Reduction (after / before)
Before 1st Purification	$(2.2 \pm 0.3) \times 10^{-18} \text{ g/g}$	-
After 1st Purification	$(2.2 \pm 0.5) \times 10^{-18} \text{ g/g}$	1.0 ± 0.3
After 2nd Purification	$(1.5 \pm 1.8) \times 10^{-19} \text{ g/g}$	15 ± 18

Table 7.5: Summary of 238 U concentration

Period	Concentration	Reduction (after / before)
Before 1st Purification	$(4.8 \pm 0.3) \times 10^{-17} \text{ g/g}$	-
After 1st Purification (top)	$(4.4 \pm 4.4) \times 10^{-18} \text{ g/g}$	10.9 ± 10.9
After 1st Purification (low)	$(2.2 \pm 0.2) \times 10^{-17} \text{ g/g}$	2.2 ± 0.2
After 2nd Purification	$(1.9 \pm 0.2) \times 10^{-17} \text{ g/g}$	2.5 ± 0.3

Table 7.8: Summary of 232 Th concentration

Period	Concentration	Reduction (after / before)
Before 1st Purification	$(2.2 \pm 0.2) \times 10^{-16} \text{ g/g}$	-
After 1st Purification	$(7.9 \pm 1.0) \times 10^{-17} \text{ g/g}$	2.8 ± 0.4
After 2nd Purification	$< 4.5 \times 10^{-18} \text{ g/g} (90\% \text{ C.L.})$	> 49

Table 7.9: Summary of $^{40}\mathrm{K}$ concentration

Kyohei Nakajima博士论文

¹³⁰Te Loading in Liquid Scintillator

¹³⁰Te makes up 34% of the natural Te abundance (Q value = 2.5275 MeV)

Forming an organometallic compound from telluric acid and butanediol:

- TeDiol (TeBD) is mixed directly into SNO+ LS with 15 mg/L bis-MSB and a stabilizer called Dimethyldodecylamine (DDA)
- Optical transparency and light yield of the final Te-loaded LS cocktail are expected to produce \sim 460 p.e. / MeV in SNO+ for 0.5% nat Te loading by weight

July 1, 2020

Neutrino 2020

Frequentist Fitting Results

July 1, 2020

KamLAND-Zen

Neutrino 2020

Christopher Grant@Neutrino2020

KamLAND-Zen

Christopher Grant@Neutrino2020

Nearly half-filled with LS since April 2020

- Operating the detector 100% remotely now
- Only changed the trigger threshold from 7 PMT hits to 10 PMT hits. Previously triggered at ~1 MeV in pure water, but now at ~35 keV!

Christopher Grant@Neutrino2020

SNO+

~8 tons of telluric acid has been "cooling" underground for several years.

Ton-scale underground purification of telluric acid for further background reduction. 掺Te液闪: Recipe (light yield & max. doping)

Purification (optical & radio-purity)

THEIA

Eur. Phys. J. C (2020) 80:416		Page 23 of 31 416			
Table 7 Dominant background source search in THEIA. The assumed loading i of 49.5 t, and 5% for Te, for a ¹³⁰ Te ma ROI/year are given for a fiducial volur	es expected for the NLDBD s 3% for Xe, for a 136 Xe mass ass of 31.4t. The events in the ne of 7 m and an asymmetric	energy range around the Q-value factor of 92.5% is applied to 10 balloon backgrounds, and of 50%	e of the reaction (see C, of 99.9% to ²¹⁴ E % to the ⁸ B solar neu	text). A rejection Bi, of 50% to the trinos	
Source	Target level	Expected events/year	Events/ROI·year		
			5% <i>nat</i> Te	3% ^{enr} Xe	
¹⁰ C		500	2.5	2.5	
⁸ B neutrinos (flux from [124])		2950	13.8	13.8	
¹³⁰ I (Te target)		155 (30 from ⁸ B)	8.3	\	
¹³⁶ Cs (^{enr} Xe target)		478 (68 from ⁸ B)	_	0.06	
$2\nu\beta\beta$ (Te, T _{1/2} from [125])		1.2×10^{8}	8.0	_	
$2\nu\beta\beta$ (^{enr} Xe, T _{1/2} from [126, 127])		7.1×10^{7}	_	3.8	
Liquid scintillator	²¹⁴ Bi: $10^{-17} g_U/g$	7300	0.4	0.4	
	208 Tl: 10^{-17} g _{Th} /g	870	_		
Balloon	²¹⁴ Bi: $< 10^{-12} g_U/g$	$< 2 \times 10^{5}$	3.0	3.4	
	²⁰⁸ Tl: $< 10^{-12} g_{Th}/g$	$< 3 \times 10^4$	0.03	0.02	

ROI定义 (-0.5 σ, 2 σ) : 效率66.9%

R=7 m FV cut : 效率67%

Background Index (B.I.)

~ 24 evts/(49.5 ton ¹³⁶Xe * 67%) =

0.72 evts/ROI/(ton ¹³⁶Xe)/yr