

李高嵩 中科院高能所

0νββ研讨会 中山大学,珠海 2021年5月22日

Outline

- $0\nu\beta\beta$ decay
- Liquid Xenon TPC technology
- EXO-200, prototype demonstration of nEXO
- nEXO design
- R&D and IHEP efforts
- Conclusion

Neutrino oscillation

The Nobel Prize in Physics 2015

Photo: A. Mahmoud Takaaki Kajita Prize share: 1/2 Photo: A. Mahmoud Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Neutrino mass generation mechanism

- Neutrino oscillation experiments demonstrate neutrinos have non-zero mass
- Neutrino mass is significantly smaller than other fermions
- Majorana nature of neutrinos allows a natural way to explain the small neutrino mass by see-saw mechanism

The search for $0\nu\beta\beta$ is the most sensitive probe of Majorana nature of neutrinos.

Double beta decay

- Double beta decay is a second order process
- Only observable if first order beta decay is energetically forbidden

Candidate with Q>2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
76 Ge \rightarrow 76 Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

Neutrinoless double beta decay ($0\nu\beta\beta$)

$2 \nu \beta \beta$ decay

Conventional process

 $0\nu\beta\beta$ has huge physics implications:

- Majorana neutrino
- Lepton number violation
- Absolute neutrino mass scale

- $2\nu \text{ VS } 0\nu$ spectrum: continuum vs peak
- Good energy resolution required to separate 0ν from 2ν

Experimental sensitivity

$$t_{1/2} \sim \sqrt{\frac{MT}{\mathbf{B} \times \Delta E}}$$

- large detector mass
- low background level
 - low radioactivity detector
 - powerful background rejection
- high energy resolution

Searching for $0\nu\beta\beta$ in ¹³⁶Xe, a phased approach

EXO-200:

- EXO-200 first 100-kg class ββ experiment
- Discovery of $2\nu\beta\beta$ in Xe-136
- 200 kg liquid-Xe TPC with ~80% Xe-136
- Located at the WIPP mine in NM, USA
- Decommissioned in Dec. 2018
- End-of-run calibration campaign data will inform the detailed design of nEXO

https://www-project.slac.stanford.edu/exo/

nEXO:

- Next-generation 5-tonne liquid Xe TPC
- Enriched in Xe-136 at ~90%
- Designed to go to beyond ~10²⁸ years.
- SNOLAB cryopit preferred location by collaboration
- Decision on funding of nEXO anticipated this summer!

https://nexo.llnl.gov/

Time Projection Chamber

- Energy deposit in liquid xenon induced two types of signals
 - Xe atoms are ionized → electrons drift to the anode and being collected
 - Xe atoms are excited → de-excitation gives VUV photons

Energy

- Using anti-correlation between charge and scintillation response
 - "Rotated" energy provides optimal resolution in the energy of interest

Scintillation vs. ionization, ²²⁸Th calibration:

Reconstructed energy, ²²⁸Th calibration:

3D vertex and SS/MS classification

- X/Y (U/V) position determined by the signals in cross wire planes with 9 mm pitch
- Z position → time delay between light and charge signals
- ββ mostly deposits energy at single location (SS)
- *γ* backgrounds deposits at multiple locations (MS)
- SS/MS classification is very powerful in background rejection

Background Suppression: Event topology SS

- Additional discrimination in SS using *spatial distribution* and *cluster size*
- Entering γ-rays rate is exponentially reduced by LXe selfshielding, provides independent measurement of γbackgrounds
 - standoff-distance

- Size of individual cluster estimated from:
 - pulse rise time (longitudinal direction)
 - number of wires with collection signal (transverse)

LXe self-shielding:

Background Suppression: Event topology MS

- $0\nu\beta\beta$ in MS arising from small energy deposits due to bremsstrahlung, while γ Compton scatters
- Distinct features in number of energy deposits, energy distribution and spatial spread among deposits
- High background rejection than in SS to compensate the fact that MS is dominated by backgrounds

All in DNN

- Deep neural network (DNN) based $0\nu\beta\beta$ discriminator
- DNN trained on images built from U-wire waveforms

- Signal/background identification efficiency correlates with the true event size based on truth information in simulation
- Indicates the network can pick up correct features on the waveform to reconstruct event, (find wire signals, cluster signals into energy deposits), thus to discriminate signal and background

Data/MC agreement for DNN

- Data/MC agreement validated with different data
 - γ : Ra-226, Th-228, Co-60 calibration sources
 - β : $2\nu\beta\beta$ data
- Showed consistent and reasonable agreement
- Any differences in data/MC are taken into account as systematic uncertainties on normalization of backgrounds within $Q_{\beta\beta} \pm 2\sigma$

Multi-dimensional fit

Results

No statistical significant signal observed

Phase I+II: 234.1 kg·yr ¹³⁶Xe exposure Limit $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25}$ yr (90% C.L.) $\langle m_{\beta\beta} \rangle < (93 - 286) \text{ meV}$ Sensitivity 5.0x10²⁵ yr

PHYSICAL REVIEW LETTERS 123, 161802 (2019)

Editors' Suggestion

Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

G. Anton,¹ I. Badhrees,^{2,a} P.S. Barbeau,³ D. Beck,⁴ V. Belov,⁵ T. Bhatta,⁶ M. Breidenbach,⁷ T. Brunner,^{8,9} G. F. Cao,¹⁰ W.R. Cen,¹⁰ C. Chambers,^{11,b} B. Cleveland,^{12,c} M. Coon,⁴ A. Craycraft,¹¹ T. Daniels,¹³ M. Danilov,^{5,d} L. Darroch,⁸ S. J. Daugherty,¹⁴ J. Davis,⁷ S. Delaquis,^{7,*} A. Der Mesrobian-Kabakian,¹² R. DeVoe,¹⁵ J. Dilling,⁹ A. Dolgolenko,⁵ M. J. Dolinski,¹⁶ J. Echevers,⁴ W. Fairbank, Jr.,¹¹ D. Fairbank,¹¹ J. Farine,¹² S. Feyzbakhsh,¹⁷ P. Fierlinger,¹⁸ D. Fudenberg,¹⁵ P. Gautam,¹⁶ R. Gomea,²⁹ G. Gratta,¹⁵ C. Hall,¹⁹ E. V. Hansen,¹⁶ J. Hoessl,¹ P. Hufschmidt,¹ M. Hughes,²⁰ A. Iverson,¹¹ A. Jamil,²¹ C. Jessiman,² M. J. Jewell,¹⁵ A. Johnson,⁷ A. Karelin,⁵ L. J. Kaufman,^{7,e} T. Koffas,² R. Krücken,⁹ A. Kuchenkov,⁵ K. S. Kumar,^{22,f} Y. Lan,⁹ A. Larson,⁶ B. G. Lenardo,¹⁵ D. S. Leonard,²³ G. S. Li0,^{15,†} S. Li,⁴ Z. Li,²¹ C. Licciardi,¹² Y. H. Lin,¹⁶ R. MacLellan,⁶ T. McElroy,⁸ T. Michel,¹ B. Mong,⁷ D. C. Moore,²¹ K. Murray,⁸ O. Njoya,²² O. Nusair,²⁰ A. Odian,⁷ I. Ostrovskiy,²⁰ A. Piepke,²⁰ A. Pocar,¹⁷ F. Retière,⁹ A. L. Robinson,¹² P. C. Rowson,⁷ D. Ruddell,¹³ J. Runge,³ S. Schmidt,¹ D. Sinclair,^{2,9} A.K. Soma,²⁰ V. Stekhanov,⁵ M. Tarka,¹⁷ J. Todd,¹¹ T. Tolba,¹⁰ T. I. Totev,⁸ B. Veenstra,² V. Veeraraghavan,²⁰ P. Vogel,²⁴ J.-L. Vuilleumier,²⁵ M. Wagenpfeil,¹ J. Watkins,² M. Weber,¹⁵ L. J. Wen,¹⁰ U. Wichoski,¹² G. Wrede,¹ S. X. Wu,¹⁵ Q. Xia,²¹ D. R. Yahne,¹¹ L. Yang,⁴ Y.-R. Yen,¹⁶ O. Ya. Zeldovich,⁵ and T. Ziegler¹

(EXO-200 Collaboration)

Background contribution to ${
m Q}\pm 2\sigma$

(counts)	$^{238}\mathrm{U}$	$^{232}\mathrm{Th}$	$^{137}\mathrm{Xe}$	Total	Data
Phase I	12.6	10.0	8.7	32.3 ± 2.3	39
Phase II	12.0	8.2	9.3	30.9 ± 2.4	26

2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: Phys.Rev.Lett. 123 (2019) no.16, 161802 ¹⁸

Neutrino mass limits

- Next generation tonne-scale experiments approaching bottom of IH or cover the entire IH
- Planned successor of EXO-200 with 5-tonne liquid xenon enriched in Xe136 $_{10^{-1}}$
- ~10²⁸ yr sensitivity to 0vbb half-life, cover the entire inverted hierarchy

From EXO-200 to nEXO

LXe mass (kg)	Diameter or length (cm)
5000	130
150	40

Artist view of nEXO in SNOLab cryopit

nEXO TPC baseline design

Charge tile anode for ionization charge collection

3000 3500

E field

R&D highlights at IHEP

nEXO: Cu中U含量检出限达到0.18 ppt JUNO: PPO放射性控制,精度可到0.2~0.4 ppt

Charge tile

- Developed by IHEP and IME
- Charge will be collected on arrays of strips fabricated onto low background dielectric wafers (baseline is silica)
 - Self-supporting/no tension
 - Built-on electronics (on back)
 - Far fewer cables
 - Ultimately more reliable, lower noise, lower activity

Max metallization cover with min capacitance

Charge readout ASIC at IHEP

IHEP ASIC readout design for nEXO

- Analog serial readout ASIC
- 32 channels per chip
- Low background: no extra decoupling capacitors on the board

IHEP LXe Test Setup for Charge Tile & ASIC Readout

- Major upgrades in both charge and light readout ongoing in the past several month
- Test charge tile and understand the signal shape
- Characterize ASIC performance in LXe

Silicon photomultiplier (SiPM) for light readout

- Parallel connected arrays of SPADs operated in Geiger mode
- Passive quenching resistor stops avalanche
- "Binary" output from each pixel
- Final output is the summation of all fired pixels

Pros

Ro

- High gain (~1e6)
- Low radioactivity
- Immune to magnetic field
- compact

Cons

- High dark rate (drastically reduced at cryogenic temperature though)
- After pulse and cross talk
- Large capacitance per unit area

SiPM performance characterization

- **1. Detector chamber**
- 2. Bandwidth filter
- 3. Reflector
- 4. cooling gas tube
- 5. LED
- 6. Xe scintillation light source

- Work closely with FBK to develop SiPM satisfying nEXO specifications
- Already found one candidate satisfying the minimum requirement

SiPM R&D

JINST 13 (2018) 09, T09006

IEEE Trans.Nucl.Sci. 67 (2020) 12, 2501-2510

Material assay and background model

Material	Supplier	Method	K	Th	U	⁶⁰ Co
			[ppb]	[ppt]	U [ppt]	$[\mu \mathbf{Bq}/\mathbf{kg}]$
Copper	Aurubis	ICPMS/Ge/GDMS	<0.7	$0.13{\pm}0.06$	$0.26 {\pm} 0.01$	<3.2
Sapphire	GTAT	NAA	9.5 ± 2.0	$6.0{\pm}1.0$	$<\!\!8.9$	-
Quartz	Heraeus	NAA	$0.55{\pm}0.04$	< 0.23	<1.5	-
SiPM	FBK	ICPMS/NAA	< 8.7	$0.45 {\pm} 0.12$	$0.86 {\pm} 0.05$	-
Epoxy*	Epoxies Etc.	NAA	$<\!\!20$	$<\!23$	<44	-
Kapton*	Nippon Steel Cables	ICPMS	-	$<2.3 \text{ pg/cm}^2$	$4.7 \pm 0.7 \text{ pg/cm}^2$	-
HFE*	3M HFE-7000	NAA	$<\!0.6$	< 0.015	< 0.015	-
Carbon Fiber	Mitsubishi Grafil	Ge	550 ± 51	58 ± 19	19 ± 8	-
ASICs	BNL	ICPMS	-	$25.7 {\pm} 0.7$	13.2 ± 0.1	
Titanium	TIMET	Ge	<3.3	57 ± 5	<7.3	-
Water	SNOLAB	Assumed	< 1000	<1	<1	-

- Extensive radio-assay and background control program
- Comprehensive background modeling for sensitivity evaluation

Component	Nuclides	Material	Mass or
	Simulated		Surface Area
Outer Cryostat	²³⁸ U, ²³² Th, ⁴⁰ K	Carbon Fiber	1774 kg
Inner Cryostat	²³⁸ U, ²³² Th, ⁴⁰ K	Carbon Fiber	338 kg
Inner Cryostat Liner	²³⁸ U, ²³² Th	Titanium	161.4 kg
HFE	²³⁸ U, ²³² Th	HFE-7000	32700 kg
TPC Vessel	²³⁸ U, ²³² Th	Copper	553.4 kg
Cathode	²³⁸ U, ²³² Th	Copper	13.02 kg
Field Rings (FR)	²³⁸ U, ²³² Th	Copper	73.2 kg
FR Support Leg	²³⁸ U, ²³² Th, ⁴⁰ K	Sapphire	0.94 kg
FR Support Spacer	²³⁸ U, ²³² Th, ⁴⁰ K	Sapphire	2.21 kg
SiPM	²³⁸ U, ²³² Th, ⁴⁰ K	SiPM	4.69 kg
SiPM Support	²³⁸ U, ²³² Th	Copper	136.4 kg
SiPM Module Backing	²³⁸ U, ²³² Th	Quartz	3.2 kg
SiPM Electronics	²³⁸ U, ²³² Th	ASICs	2.04 kg
SiPM Glue	²³⁸ U, ²³² Th, ⁴⁰ K	Epoxy	0.12 kg
SiPM Cables	²³⁸ U, ²³² Th	Kapton	$1\times 10^4~{\rm cm}^2$
Charge Module Cables	²³⁸ U, ²³² Th	Kapton	$1 imes 10^4 \ { m cm}^2$
Charge Module Electronics	²³⁸ U, ²³² Th	ASICs	1.0 kg
Charge Module Glue	²³⁸ U, ²³² Th, ⁴⁰ K	Epoxy	0.35 kg
Charge Module Support	²³⁸ U, ²³² Th	Copper	11.7 kg
Charge Module Backing	²³⁸ U, ²³² Th	Quartz	0.94 kg
TPC LXe Volume	$^{137} \mathrm{Xe},~^{222} \mathrm{Rn},~2\nu\beta\beta,~0\nu\beta\beta$	Xenon	4038 kg
Outer LXe Volume	¹³⁷ Xe, ²²² Rn, $2\nu\beta\beta$, $0\nu\beta\beta$	Xenon	1071 kg

Multi-dimensional Fit vs Counting Experiment

Multi-variate analysis maximize the sensitivity to 0vbb than simple counting experiment.

Ultimate sensitivity

* 20-30% additional improvement with machine learning discriminator JINST 14 (2019) 09, P09020
* New sensitivity evaluation with improved radio-assay data, detector design and analysis will be released soon!

nEXO publications (since 2018)

- Reflectivity of VUV-sensitive Silicon Photomultipliers in Liquid Xenon, M. Wagenpfeil, et al, arXiv:2104.07997 (2021)
- Event Reconstruction in a Liquid Xenon Time Projection Chamber with an Optically-Open Field Cage, T. Stiegler, et al (nEXO), NIMA 1000, 165239 (2021)
- Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths, P. Lv, et al (nEXO) IEEE Trans. Nucl. Sci. 67, 2501 (2020)
- Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon, P. Nakarim, et al (nEXO), JINST 15, P01019 (2020)
- Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode, O. Njoya, et al., (nEXO), NIM A 972, 163965 (2020)
- Characterization of the Hamamatsu VUV4 MPPCs for nEXO, G. Gallina, et al. (nEXO), NIMA 940, 371 (2019)
- Simulation of charge readout with segmented tiles in nEXO, Z. Li, et al., (nEXO), JINST 14, P09020 (2019)
- Study of Silicon Photomultiplier Performance in External Electric Fields, X.L. Sun, et al., (nEXO), JINST 13, T09006 (2018) (arXiv:1807.03007) (nEXO Collaboration)
- VUV-sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO, IEEE Transactions on Nuclear Science 1 (2018) (arXiv:1806.02220)(nEXO Collaboration)
- **nEXO Pre-Conceptual Design Report,** arXiv:1805.11142v2 (nEXO Collaboration)
- Characterization of an Ionization Readout Tile for nEXO, JINST 13, P01006 (2018) (arXiv: arXiv:1710.05109v1)(nEXO Collaboration)
- Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay, Physical Review C 97, 065503 (2018) (arXiv: arXiv:1710.05075v1)(nEXO Collaboration)
- Imaging individual Ba atoms in solid xenon for barium tagging in nEXO, Nature 569, 203 (2019) (arXiv:1806.10694)(nEXO Collaboration)

Summary

- EXO-200 demonstrated the liquid xenon TPC technology for $0\nu\beta\beta$ search
- nEXO is a discovery focused 0vββ experiment, designed to reach a sensitivity beyond ~10²⁸ years, based on extensive R&D work
- US DOE has scheduled a DBD portfolio review in July 2021
- Observation of $0\nu\beta\beta$ always implies new physics!

EXO-200 timeline

- Operation concluded in Dec 2018, with 1181.3 days of livetime
- Phase I from Sep 2011 to Feb 2014
 - Precise 2νββ measurement, *Phys. Rev. C* 89, 015502 (2013)
 - Stringent limit for $0\nu\beta\beta$ search, *Nature* **510**, 229 (2014)
- Phase II operation begins on Jan 31, 2016 with system upgrades
 - First results with Phase II data from upgraded detector, *Phys. Rev. Lett.* 120, 072701 (2018)
 - Final results with all exposure, Phys. Rev. Lett. 123 (2019) no.16, 161802

EXO-200

- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA
- 1624 m.w.e. overburden
- LXe vessel surrounded by ~50 Front-end cm HFE-7000 cryofluid, housed in a double-wall cryostat Vacuum
- ~25 cm passive lead shield in all directions
- Plastic scintillator panels for muon veto

Resolution improvement

Resolution at the Q value (²²⁸Th near cathode)

- Front end readout electronics
 - Reduce APD readout excess noise
- Cathode HV increased from -8 kV to -12 kV
- Software De-noising to optimize energy calibration
- De-noising adapted for Phase II as well in new analysis
- Proper Modeling of mixed collection/induction wire signals
- Energy resolution (σ/E) at $Q_{\beta\beta}$ value (design goal 1.6%)
 - Phase I: 1.35+-0.09%
 - Phase II: 1.15+-0.02%

Increasing $0\nu\beta\beta$ detection efficiency

- Another major signal efficiency loss in previous analyses has been improved in addition to the 3D cut
- Event coincidence cut
 - Originally designed to remove time-correlated events, e.g. Bi-Po event, potential muon induced long-lived decay products ...
 - Comprehensive cosmogenic background studies (*JCAP 1604 (2016) no.04, 029*) later found no evidence of contributions from such muon-induced isotopes
 - Reducing time cut window from 1s to 0.1 s is still sufficient for rejecting Bi-Po
- $0\nu\beta\beta$ detection efficiency increases from ~80% to 97.8 \pm 3.0% (96.4 \pm 3.0%) for Phase I (II)

Light/charge Diagonal cut

- Requires 2D light/charge energy calibration and good understanding of detector
- Light/charge ratio distributions validated by comparison between data/simulation using source and $2\nu\beta\beta$ data
- Powerful to reject α , as well as poorly reconstructed β/γ with anomalous light/charge ratio

Time Projection Chamber (TPC)

- Single phase liquid xenon TPC with ^{enr}Xe (80.6%)
- ~110 kg active volume
- Two back-to-back TPCs with cathode in the middle
- Scintillation light readout by APDs
- Ionization charge detected by two wire grids crossing at 60 degree
 - Collection plane (U-plane)
 - Induction (shielding) plane (V-plane)

Test stand TPC

- 3.3 cm drift length
 - Operating at up to 1 kV/cm field
- Charge tile anode with
 - 30 X strips + 30 Y strips
- PMT for light detection
 - Low efficiency though
 - Used only for trigger

Relaxed 3D cut

- Previous analyses require all events having full 3D position
- Partial 3D events are due to small energy deposit having complete collection on U-wire, but usually having no V signals because of higher threshold
- Now require >60% of energy deposits having 3D position, only recovering MS events
- Recovers almost all previously cut $0\nu\beta\beta$ events (10%) in MS due to small bremsstrahlung deposit
- Average SS fraction is 12% in the energy range $Q_{\beta\beta} \pm 2\sigma$ for Th-228 source deployed near the cathode

large area SiPM array Integration R&D

- A larger array with ~200 devices is being build
- New design optimized for light collection efficiency
- x10 increase in number of channels give rise to new technical difficulties
 - Individual DC bias for each channel with constraints in board size and low temperature
- Important to demonstrate 1% energy resolution goal with the nEXO-style charge-tile and SiPM readout
- Important R&D demonstration for DOE down selection!

Integrate large area SiPM array to the test stand

- Implemented an array of 24 SiPMs (24 cm²) to replace the PMT in the test stand for light detection
 - The first close-to-nEXO-style detector
 - Improved light collection efficiency (5-10x)

Analysis strategy

- Blinded analysis performed
- SS/MS classification
- 3-dimension fit in both SS and MS: E + DNN + standoff distance
 - Energy, event topology and spatial information
 - Make the most use of multi-parameters for background rejection
 - SS, MS relative contributions constrained by SS fraction
- Improvement of ~25% in $0\nu\beta\beta$ half-life sensitivity compared with using energy spectra + SS/MS alone

- At 4V operation voltage and LXe temperature, dark count rate < 1Hz/mm²
- Hamamatsu is better than FBK, achieves ~0.2 Hz/mm²