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Barvogenesis throuc

+ Neutrino oscillation experiments )y neutrinos have masses.
Beyond the standard model.

% Neutrino masses are much less than charged leptons and quarks.
Dirac masses from Higgs mechanism? Not likely.

One solution: if neutrinos are Majorana fermions, i.e., their own anti-
particles, the seesaw mechanism can introduce right-handed neutrinos

with large Majorana masses.
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They decay into either leptons or anti-leptons via Yukawa couplings. The
CP asymmetries of these decays result in lepton number asymmetry in
the universe.
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Lepton number asymmetry ﬁ Baryon number asymmetry

sphaleron process

If this is true, neutrinos should be Majorana fermions. But how do we know
that?



Probes: Neutrinoless Double-8 Deca

In certain even-even nuclei, -

decay is energetically
forbidden, because m(Z, A) < -

m(Z+1, A), while double-£ \ Ga
decay, from a nucleus of (Z, A) %: " _
to (Z+2, A), is energetically = B
allowed. § N Br /& Kr
g Af_/ B*/EC
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Allowed second-order weak process > —
Maria Goeppert-Mayer (1935)
2B observed for
48Ca, °Ge, 825e, 97r, 100Mo, e
16Cd, 128Te, 130Te, 136Xe, 150Nd —> /;/p

. n p
» Tests Iepton number conservation. AL—Z) )
+ The practical technique to determine if P e

» A method for determining the overall found

absolute neutrino mass scale —> > 5

C
neutrinos might be Majorana particles. has not been /




OvBp Decay E

KamLAND Zen

B[

Taken from J. F. Wilkerson's slides

Collaboration Isotope Technique m.ass (OvBp Status
isotope)

CANDLES Ca-48 305 kg CaF, crystals - lig. scint 03kg Construction
CARVEL Ca-48 48CaWO4 crystal scint. ~ ton R&D
GERDA 1 Ge-76 Ge diodes in LAr 15 kg Complete
GERDA I Ge-76 Point contact Ge in LAr 31 Operating

MAJORANA Ge-76 Point contact Ge 25 kg Operating

DEMONSTRATOR
LEGEND Ge-76 Point contact ~ ton R&D
NEMO3 N;:;(;O Foils with tracking gg E: Complete
SupetNEMO Se-82 Foils with tracking 7kg Construction
Demonstrator
SuperNEMO Se-82 Foils with tracking 100 kg R&D
LUCIFER (CUPID) Se-82 ZnSe scint. bolometer 18 kg R&D
AMoRE Mo-100 CaMoOj scint. bolometer 1.5-200 kg R&D
LUMINEU (CUPID) Mo-100 ZnMoO4 / Li2MoOQOs4 scint. bolometer 1.5-5kg R&D
COBRA Cd-114,116 CdZnTe detectors 10 kg R&D
CUORICINO, CUORE-0 Te-130 TeO> Bolometer 10 kg, 11 kg Complete
CUORE Te-130 TeO2 Bolometer 206 kg Operating
CUPID Te-130 TeO, Bolometer & scint. ~ ton R&D
SNO+ Te-130 0.3% »2Te suspended in Scint 160 kg Construction
EX0200 Xe-136 Xe liquid TPC 79 kg Operating
nEXO Xe-136 Xe liquid TPC ~ton R&D
KamLAND-Zen (I, II) Xe-136 2.7% 1n liquid scint. 380 kg Complete
KamLAND2-Zen Xe-136 2.7% in liquid scint. 750 kg Upgrade
NEXT-NEW Xe-136 High pressure Xe TPC Skg Operating
NEXT Xe-136 High pressure Xe TPC 100 kg - ton R&D
PandaX - 1k Xe-136 High pressure Xe TPC ~ ton R&D
DCBA Nd-150 Nd foils & tracking chambers 20 kg R&D




Neutrino Mass Hierarch

From neutrino oscillations we know

Am2. ~T75meV:  Ami,, ~ 2400 meV?
We also know the mixing angles that specify 1;
the linear combinations of flavor eigenstates
mps = kang > 107"
k ~ N
But we don’t know the mass hierarchy. =] : I
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A. Gando et al. PRL 117, 082503 (2016)
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OvBB Decay Rates and Relevant Terms

In case of process induced by light exchange, mass mechanism

= G, (Q, Z)‘MOVP(m/Bﬂ)

‘

.

Phase space

Phase space factor:
can be accurately calculated

Uncertainty from R: ~7% for OvBRB decay
Uncertainty from Q:

TABLE V. The uncertainty on the PSF due to the uncertainty of
the QO value.

Q5 (keV) G2l (yrh) G (yr 1)

2004.00(1133)? 1.386(67) x 1071
2017.85(64)° 1.469(05) x 1071

4.707(86) x 10713
4.815(06) x 10713

Nuclear matrix

elements

Goy(107" yr™)

Effective
Majorana mass
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J. Kotila and F. lachello, PRC 85, 034316 (2012)




OvBB Decay Rates and Relevant Terms N

In case of process induced by light exchange, mass mechanism

T~ = Gou(Q, Z)| Mo, |*(mpgp)?

‘ ¢ Nuclear matrix Effective

OV,B,B rate Phase space elements Majorana mass

But the rate also depends on a nuclear matrix element.

“An uncertainty of a factor of three in the matrix element thus

corresponds to nearly an order of magnitude uncertainty in the

amount of material required...”

J. Engel and J. Menendez, Rep. Prog. Phys. 80 (2017) 046301



OvBB Decay Nuclear Matrix Element

TP/~ = Gou(Q, Z)| My, |*(mpp)®  Must be calculated by nuclear physics!

v v g v
M = M& — 25 MY + My

QA
with
2R o0 Jo(|Q|?"ab)hGT(|Q|)0a Ob
aov _ 2 J ot +
, 2R Jo(|q|Tab) hF(lQD
My’ = —5 IquIQI J"’IZ| | Ta Ty |2)

794 Jo + F— (E; + Ef)/2 °
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lq| + E — (E; + Ef)/2

Lines of attack: Construct effective operator.

» Find good initial and final ground-state wave functions:
challenge for nuclear physics.



OvBB Decay Nuclear Matrix Element

Nuclear Models: QRPA, Shell model, GCM, etc.

What we hope: (&2 What we've got: [

10 — [ | | | [ "B REEE. | 10 — [ | | | [ j — |
B A NREDF ) B NREDF )
8 |- v PHFB — _

4 (R)QRPA
i ¢ IBM2 7 7
6 m ISM _ _
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4 | — _
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48Ca76Ge828e962r100Mc1’16Cd1248630Te136xe150Nd 48Ca76Ge828e962|;|00Mc1’16Cd124Sr‘{3OTe136xe15ONd

Current situation:
% Significant spread.
% Hard to quantify uncertainty.
% All the models miss important physics: omits correlations, omits
single particle levels...



Review of Different Nuclear Models

Some models are built on single independent-particle state.

3¢ Starting from one Slater determinant, e.g.,
> the HF state [¥o) , the ground state

= a |¢0 _I'Z mi @ ma’zlwo
e_ 9 T Z mn zg aza3|¢0>

mnzg

o . .
- = But exact diagonalization in complete
O - Hilbert space is not solvable.

Protons Neutrons



Review of Different Nuclear Models =

Some models are built on single independent-particle state.

Interacting shell model (ISM)

< Same starting point . [0)
% Instead of solving Schrodinger
ikl N bbbk : equation in complete Hilbert space,

. 3— ! one restricts the dynamics in a
- - q—é_ configuration space.
o= O H|®;) = E;|®;) — Hest|®i) = E;|®;)
S o : Configuration interaction of

orthonormal Slater determinants:
i) = cijly), (W5lr) = bk

j
Protons Neutrons Diagonalizing the Heff in the
orthonormal basis.




Review of Different NMuclear Mode/s
Some models are built on single independent-particle state.

Interacting shell model (ISM)

Pros:
: % Arbitrarily complex correlations within
— the model space.

ﬁ Cons:

+ Relatively small configuration spaces.
¢ At present most of the OvBf3 decay
NME calculations carried out by SM
are limited in one single shell.

Protons Neutrons
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Another way to build many-body states:

Instead of configuration interaction with orthogonal states, one can
diagonalize the Hamiltonian in a set of non-orthogonal basis.

@) = ZCJWJ> ik = (J|H|k)

.7
Zijck = EZNjkaaNjk = (7]k)
k k

The non-orthogonal states can be highly optimized, and hence reduce
the dimension of basis states.

- Generator-Coordinate Method (GCM)




Generator Coordinate Method

Generator Coordinate Method (GCM): an approach that treats large-
amplitude fluctuations, which is essential for nuclei that cannot be

approximated by a single mean field.

However, the results of GCM based on energy density functional look different from the
ones given by the SM calculations.

® GCM (REDF)

8 _
A GCM (NREDF)
B ISM-StMa
$ ISM-CMU
6 | ® i
&
c | R A &
= 4l A O 2
¢ 9o
: u n n n .
2 o O o -
&
0 | | | | | |
48Ca TGGe SZSe 124sn 130Te 136xe

Both the shell model and the EDF-based
GCM could be missing important physics.

¢ The EDF-GCM omits correlations.
% The shell model omits many single-
particle levels.

Does the discrepancy come from
methods themselves, or the interactions
they use?



Let's combine the virtues of both frameworks

through an idealistic GCM that includes all the
important correlations in a large single-particle space!

Sure. My current achievement is the first step in this

direction: Developed a Hamiltonian-based GCM in one
| and two (and possibly more) shells.

More correlations, larger space.

Another way is IM-SRG + GCM (IM-GCM), c.f. Jiangming Yao's talk...



Generator Coordinate Method

% Using a realistic effective Hamiltonian.
< We are trying to include all possible collective correlations.

= Q2, O = 0»,

= 3(Po+ P)), O4=3(So+S)),
% HFB states |®(q)) with multipole constraints

(H') = (Hetr) — 2z({Nz) — Z) — An({Ny) — Zkz(
< Angular momentum and particle number projection

JMK;NZ;q) = P PNPZ|®(q))

¢ Configuration mixing within GCM:

GCM wavefunction: U3 ,,) = ch;]K(Q)IJMK; NZ;q)
K,q

Hill-Wheeler equation: Z (M i (q;¢") — EING .. (g:¢)}fIE (¢) =0
K',q’

OvBB NME:  M¥PP = (U= |0 PP1ui=3 )



Generator Coordinate Method

_ | | | | | | | _ - | | | | | .
4 L @ “Ca B GCM 1 ;_ -
N 1 O N E/a -
— 3 _ Nq, B B/a ]
> {1 = 01FE .
Q r 1 E - E
= F = joF :
p— 2 n i T B 7
S 1 o VYV E
= enion &g “u = :
_ _ m 1E'3 = (0] 4808 =
0 :_ 4803 TGGe 124Srl 136Xe _: E 4Bca 75Ge 124SI"I 136X9 E
- KB3G GCN2850 SVD SVD T ~  KB3G GCN2850 SVD SVD _
o I (R Y NN IR RN S ST I N T N MR R
43Ca 76Ge 130Te 4sca 7GGe 130Te
SDPFMU-DB  pf-sdg SVD SDPFMU-DB pf-sdg SVD

The first 2+-state energies and B(E2) given by Hamiltonian-based

GCM are in great agreement with SM results.




Generator Coordinate Method

Q1: Which cormrelations are the most relevant to OvBB NMEs?

Axial deformation Proton-neutron pairing Triaxial deformation
prolate oblate triaxial
) oblate 66
B150Nd %

-06 -04 -02 0 02 04 06 0.8

prolate {

« g ©
0.8 I 5 Both theory and
0.6 . . .
) experiment indicate
0.4 ‘
= > that 76¢Ge and 7¢Se are
b5 02 s S0 .
P _ GCM SkO' —— | & triaxially deformed, but
2 I
02 - o e o the effect on OvBg
i 'R 10 - - A :
0 | I T REy— NMEs has never been
0.6 o g =0/g"=! investigated.

T. Rodriguez and G. Martinez-Pinedo N. Hinohara and J. Engel

PRL 105, 252503 (2010) PRC 90, 031301(R) (2014)



Generator Coordinate Method

Proton-neutron pairing

66 b0 0d 0o

w/o isoscalar pairing

77/ Wl isoscalar pairing
B exact solution ]

-' GCN2850 JUN45

Axial GCM 2.93 3.51
_ g Triaxial GCM 2.56 3.16
BCa®Ti HTioH Cr *Cr_*Fe Exact 2.81 [6] 3.37 [35]

~10% reduced if triaxial-shape fluctuation is included.

CFJ, J. Engel, and J.D. Holt, PRC 96, 054310 (2017)




Generator Coordinate Method

Q2: What is the effect from enhancement of model space?

For the first time, we work in the
full fo-sdg two-shell space, which

is unreachable by shell model.

¢ The effective fp-sdg-shell
interaction calculated by EKK
perturbative method.

¢ The three-body part is reduced
to an effective two-body force
by summing the third particle

over a set of occupied states
(°>¢Ni here).

TABLE II. GCM results for the Gamow-Teller (Mg4), Fermi
(Mp"), and tensor (M5") OvBB matrix elements for the decay of ®Ge
in two shells, without and with triaxial deformation.

Axial Triaxial
Mg‘é 3.18 1.99
2
— ‘;’—g Ml‘;‘U 0.55 0.38
A
M{l" —0.01 —0.02
Total M 3.72 2.35

Enhanced axially-deformed result:
Larger space captures more like-particle

pairing.

Reduced triaxially-deformed result:
Larger space captures more effect from
triaxial deformation.



Generator Coordinate Method

6 | | | | | | ' ' '
| ]
7 | sva |
sl T SM _ Y
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A - 1 %, A, o 2
I JUN45 GCN2850 ] . . S L.
- - | 5 .
E 2l 5 GCN2850 o et | | o O
- o
o . q 0 48| 76I l I I I
O Ca Ge ®Se 'sn "'Te "*Xe
2 - KB3G :
SDPFMU-DB - First-of-its-kind GCM
1 @ 1] _ calculation including
triaxial deformation.
] ] | ] ]

|
Bca ®Ca "™Ge ™Ge ¥se Ge

First-of-its-kind two full
shell Hamiltonian-based
GCM calculation (with

triaxial deformation) CFJ, J. Engel, and J.D. Holt, PRC 96, 054310 (2017)




Generator Coordinate Method

o)

@® GCM (REDF)
A GCM (NREDF)
B GCM (SVD)
O ISM-CMU

¢

A
u n
o o

124Sr|

1301-e 136xe

TABLEIII. The NME:s obtained with SVD Hamiltonian by using
GCM and SM for '**Sn, 1*°Te, and *®Xe. The SM results are taken
from Refs. [9,10]. CD-Bonn SRC parametrization was used.

MG My My M

1248n GCM 248 —0.51 —0.03 2.76
SM 1.85 —0.47 —0.01 2.15

130Te GCM 2.25 —0.47 —0.02 2.52
SM 1.66 —0.44 —0.01 1.94

B36Xe GCM 2.17 —0.32 —0.02 2.35
SM 1.50 —0.40 —0.01 1.76

Fermi part agrees well.
Gamow-Teller part is improved remarkably,
but still ~30% overestimated. WHY?

CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)



OvBB Decay NME for Sn, Te, and Xe

- l-pair decomposition:

6r M, (GCM) - N

- B (M) Decomposition of the NMEs over the
4_' @ 1 angular momentum /of the proton (or
5| B | neutron) pairs, that is
A i - | M? = M ()
Hl ] 7

136y -
- B where MYP(I) represent the contribution

1=0 |=1 =2 |=3 |=4 |=5 /=6 /=7 /=8 /=9 /=10 /=11 Trom each pair-spin /to the part of the
NME.

GCM reproduces well the cancellation between the /=0 and /=2
contributions.
GCM barely produce any contributions with /= 4.

CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)



OvBB Decay NME for Sn, Te,

6 M__(GCM) -
! e - 0.8 |-
4l g2 M__(SM) _
2+ i
i 0.6
0 ——— - —— R
i EUJ
55 136 04
Y Xe | -3
1 | | | | | 1 | | | | | %‘D
I=0 I=1 I=2 =3 |=4 |=5 =6 =7 I=8 |=9 /=10 /=11
0.2 -
0.0 |-

CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)



OvBB Decay NME for Sn, Te, and Xe

M_ (GCM) -
& M, (SM)

0.8 [

e R R s
200,900,000 0.0.0.00.0.5.0.0.0.0.9.0.0.0.0.0.90,
Ny

136Xe | _8

(XX
)
(XX
)
XX
OO
XX
PCC)
& .4
[ OC)
(R X!
D)
CXX]
K¢
RSV /1
1 | | | 1 | | | | | | 1
p—

I=0 I=1 I=2 I=3 I=4 |=5 |=6 =7 |=8 |=9/=10 |11

0.0 |

Missing high-seniority correlations? | =0 | =2 | =4 | =11
Vibrational, quasiparticle excitation, etc...

CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)



QTDA-driven GCM =

Q4: So shape + pn pairing correlations is not enough.
How to pin down all the correlations that are relevant?

| proposed a novel idea to incorporate important correlations in GCM.

Starts from the HF minimum.

Apply Thouless evolution to explore the
energy landscape

~
(I'houless theorem:

exp(2)|¥) = V') = |¥(Z))
\ V.




Q4: So shape + pn pairing correlations is not enough.
How to pin down all the correlations that are relevant?

| proposed a novel idea to incorporate important correlations in GCM.

Starts from the HF minimum.

Apply Thouless evolution to explore the
energy landscape

~
(I'houless theorem:

exp(Z)|¥) = [¥') = [¥(Z)) .
\_ J The HF minimum

Space of Slater determinants



Q4: So shape + pn pairing correlations is not enough.
How to pin down all the correlations that are relevant?

Starts from the HF minimum.

Apply Thouless evolution to explore the
energy landscape

~
(I'houless theorem:

exp(2)|¥) = V') = |¥(Z))
\ V.

|I~ U (Z2)) = eXp(Z) Uyr) Space of Slater determinants




Q4: So shape + pn pairing correlations is not enough.
How to pin down all the correlations that are relevant?

Starts from the HF minimum.

Apply Thouless evolution to explore the
energy landscape

(I'houless theorem: A
exp(Z)|¥) = |¥') = |¥(2))
. Y,
|I~ U (Z2)) = eXp(Z)|\PHF> Space of Slater determinants

Difine an energy landscape E(Z) = (W(Z)|H|¥(Z)) which can be expanded in Z
Note that the curvature around HF minimum approximates the landscape as a
qguadratic in Zand thus a multi-dimensional harmonic oscillator, leading to

TDA/RPA and their quasiparticle extension.



QTDA-driven GCM N

Here we generate non-orthogonal states by applying Thouless evolution
with QTDA operators.
Low-lying excited states are approximated as linear combinations of two-

quasiparticle excitations, represented by QTDA operator:
Z Zcrxa’é:rx (O) where éa(O) — Z &ﬁUEa(O) -+ &};VB*Q (O)

One computes the matrix elements of the Hamiltonian in a basis of two-

guasiparticle excited states
Aaar g8 = (0| [Ear (0)éa(0), [H, E5(0)2k (0)]]|)

We then solve ) Ago pp Z55 = EXTPAZT,,.
BB’
to find the coefficients Z,, of QTDA operator, and apply Thouless

theorem to get a new state
@) = exp (AZ,)|Do)



QTDA-driven GCM

30 1248" 124-|-e 130-|-e 13()xe 136xe 13(5Ba -
p— ] |
> 2.5- ) — -
S 4 4 —
—_ 20_ 4+_ - 7
> e 2" -
P_D 1.5 - 4 —_— —_— 4_ PR
Q ] ot n 4" —
v 4"
wl 1.0- ot o -
] 2 .. —_ 2t — 2 —_
0.5 - —. . _ .
00 - o .. 0 (O N Qo _ 0 . 0. i
SM GCM GCM SM GCM GCM SM GCM GCM SM GCM GCM SM GCM GCM SM GCM GCM
QTDA QTDA QTDA QTDA QTDA QTDA
My My My M : : : :
Inclusion of the vibrational motion and
12480 CHFB-GCM 2.48 —0.51 —0.03 2.76
e I A A L S5l 1\ O-quasiparticle configurations is
SM 185  —047 —001 215
130Te CHFB-GCM 2.25 —0.47 —0.02 2.52 :
QTDA-GCM 197  —069  —001 230 LAUSelells
SM 166 —044  —001 194
136Xe  CHFB-GCM 217  —032  —0.02 235
QTDA-GCM 165 —050  —0.01  1.96

SM R G R YLl CFJ and C.W. Johnson, PRC 100, 031303(R) (2019)




The effect from the tensor force

Q5: How about the effect from the tensor force?

Considering that it has a robust effect on the single-particle energies of nuclei

proton neutron
(@) @ (o)
Jo Js J Js
[ attraction ] [ repulsion ]

O wayve function of relative motion

* spin

the monopole interaction produced by
the tensor force.

[ (a) Proton ESPE
1d3/2

1d5/2

20 | INI 2I8

(c) Neutron ESPE
1h11/2

22
M
@

2d5/2

4I0 7 5;0

(b) Proton ESPE

................ 2p1/2
g et PV=.
Tl 2p3/2
- -'.'HT:).: ______
15/2 ="~
~12 1£7/2
40 " 20

64 72 5 80

T. Otsuka et al., PRL 95, 232502 (2005)

T. Otsuka et al., PRL 105, 012501 (2010)




The effect from the tensor force

1.0
| I I | I |
(a) central force : (b) tensor force : .9  *4439
Gaussian T+ p mMeson - @ Adopted RS 9, Maa%.
(strongly renormalized) exchange 0.8 ¢ w/otensor A ORe%; 9,4, a%-
o B w/tensor
r@ A 2 - -
v
VMU = + M\ —~ 0.6 - o? —
O G| % _
+¢l—| o > A
Di for the Vyy | i q M v
lagrams tor the V), Interaction g i y o |
@
0.2 é —
& A
Calculated OvBB NMEs: 00 | | | | | |

AT L 24, WAp, Bop, 130y, 16y, 136g.
*Sn  w/otensor 3.56 -0.64 -0.061 |3.91

WAV I VAV EXCS I/, provides a better description of
30Te  w/otensor 4.29 —=0.75 -0.064 |4.70

WA= VSIS (AR IR ENER Il N Uclear structure properties of
36Xe w/otensor 3.26 —0.44 —0.046 |3.49

w/tensor  2.17 050 -0.009 |2.48 | KEANAAIEREYEEVAEY CHElale RES) CYARCEY!

CFJ and C. X. Yuan, in preparation. L NMEs are suppressed, why?




The effect from the tensor force

1012

| (i i
0.0 . L 1 \lm\\\'a

1 0.09

1 0.06

il i
il

0.2

0.1 0.2

. . -0. -0.1 0.0 0.1 0.2 -0.2 -Q | OFTO HO.'l 0.2
Deformation £,

® Enhanced quadrupole deformation.

e @ 0

-0.2 -0.1 0.0

Isoscalar pairing amplitude

® Enhanced isoscalar pairing.

CFJ and C. X. Yuan, in preparation.



The effect from the tensor force

Effective single-particle energies (MeV)

Neutron and proton effective single-particle
energies at spherical shape relative to 2s,,,

orbit.

Neutron Proton
1d3/2 .
0h11/2 _— -, 1d3/2
1d '
5/2
Oh
0g 1d5:2 11/2
09y
130
Te
w/otensor w/tensor wj/otensor w/tensor
1d3/2
615112 r— 1d3/2
1d
5/2 e 0h11/2 _
097/2 1ds/z ““_\—
" S—— 0g7/2
130
Xe

Z

T T R
Q XXX
0ot

GRRRS
| tt:i}\ " RRXRK

%
#

AN

N

130 130
Neutron: " Te- Xe
H

Expt. w/ tensor w/otensoro SM1 SM?2
GCN5082 SVD

2 2 2

AN
;.:.;.:., % § B

4 N %
/ 7 7 7 D
/ / 4 Cl

0 / 0 Z / 0
Expt. w/ tensor w/o tensor SM1 SM2
GCN5082 SVD

Oh

11/2

2s

1/2

1d
0g7/2

Change in proton occupancies and neutron

vacancies

CFJ and C. X. Yuan, in preparation.



% OvBB decay is crucial probe for determining whether neutrinos are
Majorana fermion.

% Hamiltonian-based GCM enables treatment of systems presently
unreachable by other methods.

% Using vibration modes (e.g. QTDA) to build basis states around HFB
shows improvement in nuclear structure aspects and Ov38 NMEs.

Next Steps from Here...

% More reference states
¢ More QTDA phonons, or combine QTDA evolution with constrained
HFB.
% Quasiparticle random phase approximation (QRPA) operators.
% Effective Hamiltonian in larger space, or from ab /nitio non-perturbative
method.
¢ Target nuclei: 9%6Zr, 1Mo, 1¢Cd, 15°Nd...
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Thanks for your attention!



