"无中微子双贝塔衰变"研讨会,珠海

Searching for 0vββ of ¹³⁶Xe with PandaX-III

韩柯 上海交通大学

2021/05/22

韩柯, 上海交通大学

2016-Symmetry Magazine

PandaX-III

韩柯, 上海交通大学

韩柯, 上海交通大学

Detection of double beta decay

• Examples:

$${}^{136}_{54}Xe \rightarrow {}^{136}_{56}Ba + 2e^- + (2\bar{v})$$
$${}^{130}_{52}Te \rightarrow {}^{130}_{54}Xe + 2e^- + (2\bar{v})$$

sind the second second

Sum of two electrons energy

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Simulated track of $0\nu\beta\beta$ in high pressure Xe

PandaX Detectors

韩柯, 上海交通大学

Outline

- Characteristics of high pressure gaseous TPC for $0\nu\beta\beta$
- Hardware development
 - Micromegas detector modules
 - Prototype TPC and test setups
 - Electronics and DAQ
 - Infrastructure
- Simulation and analysis efforts

PandaX-III: high pressure gaseous TPC for 0vββ of ¹³⁶Xe

- TPC: 100 kg scale high pressure TPC at 10 bar operating pressure
- Charge only readout with millimeter level spatial resolution
- Good energy resolution and tracking capability for signal-background discrimination

$0\nu\beta\beta$ of ¹³⁶Xe in gasesous TPC

- Electrons from ¹³⁶Xe travel around 10 cm in 10 bar xenon
- Mostly one single track
- Two Bragg blobs at the ends (two electrons)

韩柯, 上海交通大学

Gas medium: Xe +TMA (三甲胺)

• Better energy resolution: 3% FWHM (@Q $_{0\nu\beta\beta}$) (expected)

- Better tracks

Gonzalez-Diaz, et al. NIMA 804 8 (2015)

-160

-170

-180

(mm) -200 -200 -210

-220

-230

-240

-250

Charge readout plane

- 52 Micromegas modules mounted on a backplate
- Mosaic layout to cover readout planes
 - Minimal dead zone
 - Strip and mesh signal readout
 - Second iteration with custom-designed face-to-face connectors

Prototype backplate

Charge-only readout plane with MicroMegas (MM)

- MicroMegas amplifies drift electron signal via avalanche
 - >1000 gain expected in 10 bar xenon (100 um gap)
- 3mm pitch
- Strip readout to have reasonable number of readout channels

3mm

Microbulk --> Thermal bonding Micromegas from USTC

- Original choice was Microbulk Micromegas from CERN
- Switched to thermal bonding Micromegas from USTC since early 2020

Recent progress on USTC thermal bonding MM

- Now 5th version of thermal bonding Micromegas under testing.
- Tested in 1/8/10 bar argon mixture gases.
- Best energy resolution at 6 keV (⁵⁵Fe) is 15% in 1 bar argon/CO₂.
- No dead channels!

Development of thermal bonding Micromegas

10.4 To a set **V2 V4 V1** 3mm edge, long term stability 14

Low background, Energy resolution, uniformity

Readout PCB

Thermal bonding MM

Test setups, prototype, and full vessel at SJTU

Prototype TPC: 7 MM, 10 bar Full vessel: low background SS, 4 m³ inner volume

1 MM, flow gas

1 MM, 16 bar

MiniTPC:

Prototype TPC at Shanghai

- About 600 L inner volume
- Field cage: 66 cm diameter, 78 cm drift length
- 16 kg of xenon at 10 bar
- SS pressure vessel Top flat flange Micromegas To electronics module • 7 MM Charge Electron drift direction readout plane Electric field т shaping cage Cathode Ports for high voltage, pumping, gas filling, etc SS pressure vessel

Field cage

- Tiled Kapton Flexible PCB + SMD resistors
- Tested in small and medium scale
 - HV performance comparable with copper bar options
- Fabricated by TangChen (JUNO vendor) for low background control

Design of field cage of full TPC

韩柯, 上海交通大学

Front end electronics

Frontend electronics based on AGET

ASIC chips

- 64 channel per AGET
- 512 sampling point per channel
- Dynamic range up to 10 pC
- Sampling rate: 1 MHz to 100 MHz

V6 for mass production, in progress

Quest for low background

Low background connector found by USTC

Backend

Backend: The Trigger and Data Concentrator Module – TDCM

- Designed by Saclay for PandaX-III and T2K-II
- A custom-made 6U form factor carrier board with two physical layer mezzanine cards for 32 FECs
- Backup option: DCM from USTC

DAQ chain

Gas circulation and purification system

Detector installation fixture

Traditional "cut" based analysis

- Reconstructing tracks in XZ, YZ planes
- Number of tracks optimization by tuning "track distance"
- Energy of end blobs cut optimization

Convolutional Neural network (CNN) for track classification

- XZ, YZ 2D snapshots of an event as input of CNN to spill out an index of signal/background
- Prepare image collections for CNN training, validation, and classification.
- No track reconstruction needed.
- More effective than traditional cut based approach.

26

Kalman filter based track reconstruction

- Iterative process with Kalman filter in Bayesian formalism to better reconstruct the tracks and calculate dE/dx
- Improve $0\nu\beta\beta$ search sensitivity by 3 times to $2.7 \times 10^{26}\gamma$ ear
- Tao Li (SYSU), Shaobo Wang, et al arXiv:2102.08221

Signal

470

460

440

430

-340

-320

-300

-280

-260

Ν

Double beta decay to excited states

- Double beta decay to excited states of ¹³⁶Ba
- Dual-electron + Gamma emission: clearer signature
- Position sensitivity and dual-beta/gamma discrimination to enhance search sensitivity: NLDBD-ES by 4.8 times, and DBD-ES by 1.8 times.

Summary

- PandaX-III 100-kg scale high pressure gas TPC module
 - Sub-systems move forward
 - Assembly starts soon
- Half-life sensitivity with 3 years of data: 9× 10²⁵ yr (90% CL)
 - Will fully exploit tracking feature to further improve the sensitivity

