"无中微子双贝塔衰变"研讨会

May 19th – 23rd 2021, Zhuhai

Nuclear double-β decay studied by self-consistent QRPA approach

Yifei Niu キー変

Lanzhou University

- Introduction
- Theoretical Framework
- $2\nu 2\beta$ NME calculated by Skyrme QRPA
- $2\nu 2\beta$ NME calculated by relativistic QRPA
- Summary and Perspective

Nuclear double beta decays

A. S. Barabash, Phys. Rev. C 81, 035501 (2010)

Candidate nuclei for $\beta\beta$ -decay

ββ-decay candidates:

- ✓ even-even nucleus (Z,A)
- ✓ pairing forces make it more bound than its (Z+1, A) neighbor, but less so than the (Z+2,A) nuclide.

<无中微子双贝塔衰变实验>科学出版社(2020)

Haxton, PPNP 12, 409 (1984)

$\beta^{-}\beta^{-}$ transition	$\beta^{-}\beta^{-}$ transition
${}^{46}\text{Ca} \rightarrow {}^{46}\text{Ti}$	134 Xe $\rightarrow ^{134}$ Ba
48 Ca $\rightarrow {}^{48}$ Ti	136 Xe $\rightarrow ^{136}$ Ba
$^{70}Zn \rightarrow {}^{70}Ge$	$^{142}Ce \rightarrow ^{142}Nd$
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	$^{146}\text{Nd} \rightarrow ^{146}\text{Sm}$
$^{80}\text{Se} \rightarrow {}^{80}\text{Kr}$	$^{148}\text{Nd} \rightarrow ^{148}\text{Sm}$
$^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	$^{1.50}$ Nd $\rightarrow ^{150}$ Sm
$^{86}\mathrm{Kr} ightarrow {}^{86}\mathrm{Sr}$	$^{154}\text{Sm} \rightarrow ^{154}\text{Gd}$
$^{94}\mathrm{Zr} \rightarrow ^{94}\mathrm{Mo}$	$^{160}\text{Gd} \rightarrow ^{160}\text{Dy}$
$^{96}\mathrm{Zr} ightarrow ^{96}\mathrm{Mo}$	$^{170}\mathrm{Er} \rightarrow ^{170}\mathrm{Yb}$
$^{98}Mo \rightarrow {}^{98}Ru$	$^{176}\text{Yb} \rightarrow ^{176}\text{Hf}$
$^{100}Mo \rightarrow {}^{100}Ru$	$^{186}W \rightarrow ^{186}Os$
$^{104}\mathrm{Ru} \rightarrow ^{104}\mathrm{Pd}$	$^{192}\text{Os} \rightarrow ^{192}\text{Pt}$
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	$^{198}\mathrm{Pt} ightarrow ^{198}\mathrm{Hg}$
$^{114}Cd \rightarrow ^{114}Sn$	$^{204}\text{Hg} \rightarrow ^{204}\text{Pb}$
$^{116}Cd \rightarrow ^{116}Sn$	226 Ra $\rightarrow ^{226}$ Th
$^{122}\text{Sn} \rightarrow ^{122}\text{Te}$	$^{232}\text{Th} \rightarrow ^{232}\text{U}$
$^{124}Sn \rightarrow ^{124}Te$	$^{238}\mathrm{U} ightarrow ^{238}\mathrm{Pu}$
$^{128}\mathrm{Te} \rightarrow ^{128}\mathrm{Xe}$	244 Pu $\rightarrow ^{244}$ Cm
$^{130}\mathrm{Te} ightarrow ^{130}\mathrm{Xe}$	$^{248}\mathrm{Cm} ightarrow ^{248}\mathrm{Cf}$

Experimentally observed $2\nu 2\beta$

• 2v ββ decay half-life and NMEs

 $\left[T_{1/2}^{2\nu}\right]^{-1} = G^{2\nu}g_A^4 \left| M_{\rm GT}^{2\nu} \right|^2$

✓ $G^{2\nu}(Q_{\beta\beta}, Z)$: phase space factor kinetics calculation

J. Suhonen and O. Civitarese, Phys. Rep. 300, 123(1998)
J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012)
S. Stoica and M. Mirea, Phys. Rev. C 88, 037303(2013)

- majority nuclei : < 1%</p>
- ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd: ~ 4%-6%

A. S. Barabash, Phys. Rev. C 81, 035501 (2010) A. S. Barabash, Nucl. Phys. A 935, 52 (2015)

✓ Nuclear Matrix Element (NME)

Lowest-order transition operators: Fermi: forbidden by isospin conservation Gamow-Teller (GT): allowed

$$M_{\rm GT}^{2\nu} = \sum_{N_1N_2} \frac{\langle \psi_{K'} || \hat{O}_{\rm GT}^- || \psi_{N_2} \rangle \langle \psi_{N_2} | \psi_{N_1} \rangle \langle \psi_{N_1} || \hat{O}_{\rm GT}^- || \psi_K \rangle}{E_N^* + M_N - (M_K + M_{K'})/2}$$

"Experimental" NMEs

TABLE II. Half-life and nuclear matrix element values for twoneutrino double- β decay (see Sec. IV).

Isotope	$T_{1/2}(2\nu)$ (years)	$M^{2\nu}$
⁴⁸ Ca	$4.4^{+0.6}_{-0.5} imes 10^{19}$	$0.0238^{+0.0015}_{-0.0017}$
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716^{+0.0025}_{-0.0023}$
⁸² Se	$(0.92 \pm 0.07) imes 10^{20}$	$0.0503^{+0.0020}_{-0.0018}$
⁹⁶ Zr	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491^{+0.0023}_{-0.0020}$
¹⁰⁰ Mo	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258^{+0.0037}_{-0.0034}$
100 Mo- 100 Ru(0 ⁺ ₁)	$5.9^{+0.8}_{-0.6} imes 10^{20}$	$0.1017_{-0.0063}^{+0.0056}$
¹¹⁶ Cd	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695^{+0.0025}_{-0.0024}$
¹²⁸ Te	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249^{+0.0031}_{-0.0023}$
¹³⁰ Te	$(6.8^{+1.2}_{-1.1}) \times 10^{20}$	$0.0175^{+0.0016}_{-0.0014}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320^{+0.0018}_{-0.0017}$
150 Nd- 150 Sm(0 ⁺ ₁)	$1.33^{+0.45}_{-0.26} imes 10^{20}$	$0.0250^{+0.0029}_{-0.0034}$
²³⁸ U	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271^{+0.0053}_{-0.0033}$
¹³⁰ Ba; ECEC(2ν)	$(2.2 \pm 0.5) \times 10^{21}$	$0.105\substack{+0.014\\-0.010}$

A. S. Barabash, Phys. Rev. C 81, 035501 (2010)

Nuclear Models for $2\nu\beta\beta$ -decay

Π Theoretical model in $2v\beta\beta$:

✓ Shell Model

E. Caurier, F. Nowacki, and A. Poves, Phys. Lett. B 711, 62 (2012)

R. A. Senkov and M. Horoi, Phys. Rev. C 90, 051301R (2014)

B. A. Brown, D. L. Fang, and M. Horoi, Phys. Rev. C 92, 041301 (2015)

H.-T. Li, and Z.-Z. Ren, Phys. Rev. C 96, 065503 (2017)

✓ QRPA

J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998)

A. Faessler and F. Simkovic, J. Phys. G 24, 2139 (1998)

R. Alvarez-Rodriguez, P. Sarriguren, et al. Phys. Rev. C 70, 064309 (2004)

M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013)

✓ Projected HFB

B. M. Dixit, P. K. Rath, and P. K. Raina, Phys. Rev. C 65, 034311 (2002)

R. Chandra, J. Singh, et al., Eur. Phys. J. A 23, 223 (2005)

*Angular momentum projection for deformation

✓ Interacting Boson Model

J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91, 034304 (2015)

Quasiparticle Random Phase Approximation (QRPA)

QRPA: widely used for the description of spin-isospin excitations

• The RPA excited state is generated by

$$Q_{\nu}^{\dagger} = \sum_{mi} X_{mi}^{\nu} a_m^{\dagger} a_i - \sum_{mi} Y_{mi} a_i^{\dagger} a_m$$

 ✓ Full 1p1h configuration space ⇒ almost whole nuclear chart

RPA

✓ No closure approximation when calculating NME of 2vββ

$$M_{\rm GT}^{2\nu} = \sum_{N_1 N_2} \frac{\langle \psi_{K'} || \hat{O}_{\rm GT}^- || \psi_{N_2} \rangle \langle \psi_{N_2} | \psi_{N_1} \rangle \langle \psi_{N_1} || \hat{O}_{\rm GT}^- || \psi_K \rangle}{E_N^* + M_N - (M_K + M_{K'})/2}$$

$$\langle 1^{+} \left| \left| \hat{O}_{\mathrm{GT}}^{-} \right| \right| 0^{+} \rangle = - \langle 0^{+} \left| \left| \hat{O}_{\mathrm{GT}}^{+} \right| \right| 1^{+} \rangle^{*}$$

• Self-consistent QRPA approach:

the same interaction is used for ground state and excited states calculation

$$h_{kk'} = \frac{\delta E_{HF}}{\delta \rho_{kk'}}$$
, $V_{res.}^{mi,nj} = \frac{\delta^2 E_{HF}}{\delta \rho_{mi} \delta \rho_{nj}}$, where $E_{HF} = \langle \Phi \mid H_{eff} \mid \Phi \rangle$

Successful applications in β-decay and electron-capture calculations:

 β-decay based on relativistic density functional

- β-decay half-lives for 5409 nuclei
- ✓ self-consistent
- ✓ Similar accuracy as FRDM+QRPA

 Electron capture based on Skyrme density functional Fantina, et al., PRC 86, 035805 (2012)

- ✓ self-consistent
- Good agreement with shell model

Quasiparticle Random Phase Approximation (QRPA)

• NME of 2vββ studied by Skyrme QRPA

✓ Deformation effect on the NME

P. Sarriguren, Phys. Rev. C 86, 034335 (2012)

D. N. Nicolas and P. Sarriguren, Phys. Rev. C 91, 024317 (2015)

- Single- and low-lying-states dominance hypotheses (SSDH/LLDH)
 O. Moreno, et al., J. Phys. G 36, 015106 (2009)
 P. Sarriguren, O. Moreno, and E.Moya de Guerra, Adv. HEP (2016)
- ✓ Attempt to remove the uncertainty of g_A and the strength of IS pairing J. Terasaki, and Y. Iwata, Phys. Rev. C 100, 034325 (2019)

• NME of 2vββ studied by Relativistic QRPA

 RMF-BCS+RQRPA with parameter set NL1: only NME values for 6 nuclei are reported

Conti, Krmptoic and Carlson, Proceedings of Science, XXXIV BWNP 126 (2011)

• Single- and low-lying-states dominance hypotheses (SSDH/LLDH):

The decay rate of the two-neutrino $2\nu\beta\beta$ decay to the final ground state is determined by virtual single- β -decay transitions via the ground state/low-lying states of the intermediate nucleus. J. Abad, et al., Ann. Fis. A 80, 9 (1984)

SSDH: $M_{\rm GT}^{2\nu} \approx \frac{\langle 0_{\rm g.s.}^{+(f)} || \hat{O}_{\rm GT}^{-} || 1_{\rm g.s.}^{+(N)} \rangle \langle 1_{\rm g.s.}^{+(N)} || \hat{O}_{\rm GT}^{-} || 0_{\rm g.s.}^{+(i)} \rangle}{M_N - (M_i + M_f)/2}$ LLDH: $M_{\rm GT}^{2\nu} \approx \sum_{n \in \{\rm LL\}} \frac{\langle 0_{\rm g.s.}^{+(f)} || \hat{O}_{\rm GT}^{-} || 1_n^{+(N)} \rangle \langle 1_n^{+(N)} || \hat{O}_{\rm GT}^{-} || 0_{\rm g.s.}^{+(i)} \rangle}{E_n^{*(N)} + M_N - (M_i + M_f)/2}$

- ✓ Avoid the tremendous summation.
- ✓ Directly calculate the NME from the β^- or EC experimental data. H. Akimune, et al., Phys. Lett. B 394, 23 (1997)

LBNL collaboration calculate the $2\nu\beta\beta$ half-life of ${}^{100}Mo(g.s.)$ -> ${}^{100}Ru(g.s.)$ with the EC of ${}^{100}Tc$ -> ${}^{100}Mo$ and the β^- of ${}^{100}Tc$ -> ${}^{100}Ru$. They get $(9.7 \pm 4.9) \times 10^{18}$ yr. $[(7.1 \pm 0.4) \times 10^{18}$ yr, Barabash2010] A. Garcia, et al., Phys. Rev. C 47, 2910 (1993)

• Mechanism of SSDH/LLDH:

1. only g.s. or low-lying state(s) H. Nakada, T. Seba, and K. Muto, Nucl. Phys. A 607, 235 (1996) H. Ejiri and H. Toki, J. Phys. Soc. Japan 65, 7 (1996)

2. cancellation between higher lying states

F. Simkovic, A. Smetana, and P. Vogel, Phys. Rev. C 98, 064325 (2018)

✓ Shell model

M. Horoi, S. Stoica, and B. A. Brown, Phys. Rev. C 75, 034303 (2007)

• Mechanism of SSDH/LLDH:

1. only g.s. or low-lying state(s) H. Nakada, T. Seba, and K. Muto, Nucl. Phys. A 607, 235 (1996) H. Ejiri and H. Toki, J. Phys. Soc. Japan 65, 7 (1996)

2. cancellation between higher lying states

F. Simkovic, A. Smetana, and P. Vogel, Phys. Rev. C 98, 064325 (2018)

✓ Spherical and deformed QRPA

D. L. Fang, et al., Phys. Rev. C 81, 037303 (2010)

*Expt: $M_{\rm GT}^{2\nu} = 0.14 {\rm ~MeV^{-1}}$

• Mechanism of SSDH/LLDH:

1. only g.s. or low-lying state(s) H. Nakada, T. Seba, and K. Muto, Nucl. Phys. A 607, 235 (1996) H. Ejiri and H. Toki, J. Phys. Soc. Japan 65, 7 (1996)

2. cancellation between higher lying states

F. Simkovic, A. Smetana, and P. Vogel, Phys. Rev. C 98, 064325 (2018)

- ✓ A natural question:
 - Why do the high-lying states give negative contributions such that the SSDH/LLDH is valid?

Aim of this work

- Within the framework of HFB + QRPA based on Skyrme density functional
 - To calculate the NMEs of 2νββ systematically
 - ✓ To study the dependence of isoscalar pairing strength, and determine the proper values by comparing with exp. data
 - To reveal the mechanism of SSDH/LLDH by understanding the cancellation from higher lying states
- Within the framework of RHB + QRPA based on relativistic density functional
 - \checkmark To calculate the NMEs of 2vββ systematically for the first time
 - ✓ To study the dependence of isoscalar pairing strength, and determine the proper values by comparing with exp. data

Introduction

- Theoretical Framework
- $2\nu 2\beta$ NME calculated by Skyrme QRPA
- $2\nu 2\beta$ NME calculated by relativistic QRPA
- Summary and Perspective

Formalism: QRPA

Charge exchange QRPA in canonical basis •

$$\begin{bmatrix} A & B \\ -B^* & -A^* \end{bmatrix} \begin{bmatrix} X^{nJ} \\ Y^{nJ} \end{bmatrix} = \Omega^{nJ} \begin{bmatrix} X^{nJ} \\ Y^{nJ} \end{bmatrix}$$

Y term

$$\begin{split} A_{ll',kk'} &= \left(H_{lk}^{11} \delta_{l'k'} + H_{l'k'}^{11} \delta_{kl} \right) & \text{X term } Y \text{ term} \\ &+ \left[(u_l u_{l'} u_{k'} u_k + v_l v_{l'} v_{k'} v_k) \langle ll' | V | kk' \rangle_J^{pp} & l, k \text{ for proton} \\ &+ (u_l v_{l'} v_{k'} u_k + u_{l'} v_l v_k u_{k'}) \langle lk' | V | l'k \rangle_J^{ph} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}) \langle ll' | V | kk' \rangle_J^{pp} & l', k' \text{ for neutron} \\ &+ (u_k u_{k'} v_{l'} v_{l'} v_{k'} v_$$

 $+ (u_k u_{l'} v_{k'} v_l + u_{k'} u_l v_k v_{l'}) \langle lk' | V | l'k \rangle_J^{ph}$

* B = 0 for QTDA

Transition amplitude: \checkmark

$$\langle nJ || \hat{O}^{-} || 0 \rangle = \sum_{pn} - \langle j_{p} || \hat{O}^{-} || j_{n} \rangle [X_{pn}^{nJ} v_{n} u_{p} + Y_{pn}^{nJ} v_{p} u_{n}]$$

$$\langle nJ || \hat{O}^{+} || 0 \rangle = \sum_{pn} (-)^{j_{p} + j_{n} + J} \langle j_{n} || \hat{O}^{+} || j_{p} \rangle [X_{pn}^{nJ} v_{p} u_{n} + Y_{pn}^{nJ} v_{n} u_{p}]$$

Formalism: Isoscalar pairing

- Isoscalar pairing
 - 1. No experimental constraint on isoscalar pairing
 - 2. Important for $B(GT^{-})$, β -decay half-lives and $M_{GT}^{2\nu}$.

M. K. Cheoun, et al., Nucl. Phys A 561, 74 (1993) C. L. Bai, et al., Phys. Rev. C 90, 054335 (2014) Y. F. Niu, et al., Phys. Lett. B 780, 325 (2018)

$$V^{pp}(m{r}_1,m{r}_2) = \left(t_0' + rac{t_3'}{6}
ho^{\gamma'}(m{R})
ight)\delta(m{r}_1 - m{r}_2)$$

$$\begin{aligned} \langle ab|V^{pp}(1 - P_r P_\sigma P_\tau)|cd\rangle \\ = \langle T = 0, S = 1|V^{pp}\frac{1 + P_\sigma}{2}|T = 0, S = 1\rangle \\ + \langle T = 1, S = 0|V^{pp}\frac{1 - P_\sigma}{2}|T = 1, S = 0\rangle \end{aligned} \tag{IS}$$

$$V_{T=0}^{pp}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) = \left(t_{0}' + \frac{t_{3}'}{6}\rho^{\gamma'}(\frac{\boldsymbol{r}_{1} + \boldsymbol{r}_{2}}{2})\right)\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2})\frac{\boldsymbol{f}_{\mathrm{IS}}^{3} + \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}}{4} \quad (\boldsymbol{f}_{\mathrm{IS}} \text{ is free})$$

$$V_{T=1}^{pp}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \left(t'_0 + \frac{t'_3}{6}\rho^{\gamma'}(\frac{\boldsymbol{r}_1 + \boldsymbol{r}_2}{2})\right)\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2)\frac{1 - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2}{4}$$

• Overlap factor

$$M_{\rm GT}^{2\nu} = \sum_{n_i n_f} \frac{\langle 0_{\rm g.s.}^{+(f)} || \hat{O}_{\rm GT}^{-} || 1_{n_f}^{+} \rangle \langle 1_{n_f}^{+} |1_{n_i}^{+} \rangle \langle 1_{n_i}^{+} || \hat{O}_{\rm GT}^{-} || 0_{\rm g.s.}^{+(i)} \rangle}{E_n^{*(N)} + M_N - (M_f + M_i)/2} \qquad \langle 1_{n_f}^{+} || \hat{O}_{\rm GT}^{+} || 0_{\rm g.s.}^{+(f)} \rangle$$

 $|1_{n_i}^+\rangle$ and $|1_{n_f}^+\rangle$ calculated from initial and final nucleus are not normal orthogonal.

$$\langle 1^+_{n_f} | 1^+_{n_i} \rangle = a_{n_i n_f} \langle \mathrm{HFB}_{\mathrm{can.}f} | \mathrm{HFB}_{\mathrm{can.}i} \rangle$$

$$\langle \mathrm{HFB}_{\mathrm{can.}f} | \mathrm{HFB}_{\mathrm{can.}i} \rangle \approx \prod_{k>0} (u_k^{(i)} u_k^{(f)} + v_k^{(i)} v_k^{(f)})$$

$$a_{n_{i}n_{f}} = \sum_{k_{i}k'_{i}} \sum_{k_{f}k'_{f}} C_{k_{f}k_{i}} C_{k'_{f}k'_{i}} (X^{n_{i}}_{k_{i}k'_{i}} X^{n_{f}}_{k_{f}k'_{f}} - Y^{n_{i}}_{k_{i}k'_{i}} Y^{n_{f}}_{k_{f}k'_{f}})$$
$$\cdot (u^{(i)}_{k_{i}} u^{(f)}_{k_{f}} + v^{(i)}_{k_{i}} v^{(f)}_{k_{f}}) (u^{(i)}_{k'_{i}} u^{(f)}_{k'_{f}} + v^{(i)}_{k'_{i}} v^{(f)}_{k'_{f}})$$

 $C_{k_f k_i}$: overlap between s.p. wavefunctions

Formalism: Energy denominator

• Energy denominator $= E_n^{*(N)} + M_N + \frac{M_i - M_f}{2} - M_i = E_n^{*(N)} + M_N - \frac{M_i + M_f}{2}$

- Introduction
- Theoretical Framework
- $2\nu 2\beta$ NME calculated by Skyrme QRPA
- $2\nu 2\beta$ NME calculated by relativistic QRPA
- Summary and Perspective

Numerical details

HFB:

- 1. Skyrme interaction: SkO'
- 2. Surface pairing, fit the experimental mean pairing gap

3. Diffuseness parameter of pairing window: 0.1 MeV

- 4. $E_{\text{cut}} = 80.0 \text{ MeV}$ (Quasiparticle energy)
- 5. $j_{\text{max}} = 21/2$

QRPA:

- 1. Single-particle energy: $\varepsilon_{\rm s.p.} < 60.0 {\rm ~MeV}$
- 2. $|u_p v_n| > 10^{-3}$ and $|u_n v_p| > 10^{-4}$

$\blacksquare M_{\rm GT}^{2\nu}$

1. For each QRPA state, the ph configuration with $|X_{ph}^2 - Y_{ph}^2| > 10^{-6}$ is considered.

• Dependence of NME on isoscalar pairing strength

Exp. data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)

Running sum of NME

• Running sum of NME as a function of excitation energy of intermediate states

Isoscalar pairing strength and SSDH/LLDH

Nucleus	⁴⁸ Ca	$^{76}\mathrm{Ge}$	⁸² Se	$^{96}\mathrm{Zr}$	¹⁰⁰ Mo
Expt. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	$0.046{\pm}0.004$	$0.136 {\pm} 0.007$	$0.100 {\pm} 0.005$	$0.097{\pm}0.005$	$0.223 {\pm} 0.006$
Theo. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	0.046	0.062	0.070	0.139	0.288
Theo. $M_{\rm GT}^{2\nu}({ m SSD})~({ m MeV^{-1}})$	0.035	0.054	0.015	0.230	0.570
Theo. $M_{\rm GT}^{2\nu}({\rm LLD}) \ ({\rm MeV^{-1}})$	0.036	0.125	0.098	0.234	0.407
$f_{ m IS}$	0.70	1.20	1.20	0.00	1.28

Nucleus	¹¹⁶ Cd	$^{128}\mathrm{Te}$	$^{130}\mathrm{Te}$	$^{136}\mathrm{Xe}$	$^{150}\mathrm{Nd}$	$^{238}\mathrm{U}$
Expt. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	$0.127{\pm}0.004$	$0.056 {\pm} 0.007$	$0.037 {\pm} 0.005$	$0.022{\pm}0.001$	$0.070 {\pm} 0.005$	$0.157\substack{+0.109\\-0.085}$
Theo. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	0.139	0.037	0.021	0.022	0.071	0.140
Theo. SSD	< 0.001	0.040	0.018	< 0.001	0.156	0.177
Theo. LLD	0.096	0.102	0.116	0.007	0.156	0.177
$f_{\rm IS}$	0.00	1.20	1.20	1.00	1.25	1.20

Exp. data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)

 $*g_A = 1.273$ is used to calculate the expt. $M_{\rm GT}^{2\nu}$

The upper limit of energy of LLD is 5MeV, except for ⁸²Se (2 states only).

✓ SSD nuclei: ⁴⁸Ca, ⁷⁶Ge, ¹²⁸Te, ¹³⁰Te, ²³⁸U

✓ LLD nuclei: ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd

Single	e-state dominance	$^{128}\text{Te} \rightarrow ^{1}$	$f_{\rm IS} =$	1.2
	$M_{ m GT}^{2 u}$ [MeV ⁻¹]	Expt.	Theo. (All 1^+)	Theo. (1_1^+)
	¹²⁸ Te	0.056	0.037	0.040

• QRPA vs. QTDA

With the inclusion of ground-state correlation Y term:

- ✓ NME is decreased.
- ✓ With the increase of $f_{\rm IS}$, NME decreases monotonously
- ✓ Negative contributions appear in 10.0-12.5MeV of int. nucleus at f_{IS} =1.2.

- Single-state dominance
 $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ $f_{IS} = 1.2$
 $M_{GT}^{2\nu}$ [MeV⁻¹]
 Expt.
 Theo. (All 1⁺)
 Theo. (1_1^+)
 ^{128}Te 0.056
 0.037
 0.040
- QRPA vs. QTDA

•

SSDH mechanism

Negative contributions of higher lying states caused by ground-state correlation Y term

How does ground-state correlation influence the NME?

Ground-state correlation Y_{ph} mainly influences the GT⁺ transition.

How does ground-state correlation make negative contribution?

QRPA Eq: $-BX = (A + \Omega)Y$

$$\begin{split} \breve{B}_{ll',kk'} &= -\left(u_k u_{k'} v_l v_{l'} + u_l u_{l'} v_k v_{k'}\right) \langle ll'|V|kk'\rangle_J^{pp} \quad \text{attractive} \\ &+ \left(u_k u_{l'} v_{k'} v_l + u_{k'} u_l v_k v_{l'}\right) \langle lk'|V|l'k\rangle_J^{ph} \quad \text{repulsive} \end{split}$$

✓ Both $(A + \Omega)$ and *B* are positive.

 \longrightarrow X and Y are of opposite sign.

✓ *B* get large with the increase of $f_{\rm IS}$

 \longrightarrow |Y| will approach to X

→ GT transition amplitude becomes smaller

 \rightarrow NME decreases with increasing $f_{\rm IS}$

P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148(1986) O. Civitarese, Amand Faessler and T. Tomoda, Phys. Lett. B 194, 11(1987)

How does ground-state correlation make negative contribution?

✓ $\langle 1_{int}^+ || GT^- || 0_i^+ \rangle$ is almost independent from Y_{ph}

✓ $\langle 1_{int}^+ || GT^+ || 0_f^+ \rangle$ is sensitive to Y_{ph} , and its sign changes for higher-lying states.

• Why does ground-state correlation play its role through GT+?

$$\begin{split} \langle J || \hat{O}^{-} || 0 \rangle &= \sum_{pn} - \langle j_{p} || \hat{O}^{-} || j_{n} \rangle [X_{pn}^{nJ} v_{n} u_{p} + Y_{pn}^{nJ} v_{p} u_{n}] \\ \langle J || \hat{O}^{+} || 0 \rangle &= \sum_{pn} (-)^{j_{p} + j_{n} + J} \langle j_{n} || \hat{O}^{+} || j_{p} \rangle [X_{pn}^{nJ} v_{p} u_{n} + Y_{pn}^{nJ} v_{n} u_{n}] \end{split}$$

¹²⁸Te: neutron-rich nucleus

- GT+ transitions: completely blocked at mean-field level
- ✓ pairing correlation: unblock the transition through X term
- ✓ Ground-state correlation: block/unblock the transition through Y term
- GT+ is sensitive to ground-state correlation

- Introduction
- Theoretical Framework
- $2\nu 2\beta$ NME calculated by Skyrme QRPA
- $2\nu 2\beta$ NME calculated by relativistic QRPA
- Summary and Perspective

Numerical details

RHB:

1. Density dependent meson-exchange interaction: DD-ME1 DD-ME2

- 2. Gogny pairing force D1S
- 3. Harmonic oscillator basis N_{max} =20

QRPA:

- 1. Single-particle energy in Fermi sea: $\varepsilon_{\rm s.p.} < 200.0 \text{ MeV}$
- 2. Single-particle energy in Dirac sea: $\varepsilon_{s.p.} > -2000.0 \text{ MeV}$
- 2. $|u_p v_n| > 10^{-2}$ and $|u_n v_p| > 10^{-2}$

$\blacksquare M_{\rm GT}^{2\nu}$

1. For each QRPA state, the ph configuration with $|X_{ph}^2 - Y_{ph}^2| > 10^{-6}$ is considered.

2. Single-particle wavefunctions of initial and final state are assumed to be the same

$$\left\langle \psi_{\alpha}^{f} \left| \psi_{\beta}^{i} \right\rangle = \left\langle - \left| a_{\alpha}^{f} a_{\beta}^{i} \right|^{+} \right| - \right\rangle = \delta_{\alpha\beta}$$

NME of $2\nu\beta\beta$

• Dependence of NME on isoscalar pairing strength

Running sum of NME

• Running sum of NME as a function of excitation energy of intermediate states

$$E_n^{*(N)} = \frac{1}{2} \left(\left[(\Omega_n^i - \lambda_{\text{neu.}}^i + \lambda_{\text{pro.}}^i) + (\Omega_n^f + \lambda_{\text{neu.}}^f - \lambda_{\text{pro.}}^f) - (2M_N - M_i - M_f) \right] \right)$$

Isoscalar pairing strength

• The isoscalar pairing strengths determined by experimental NME values

Isotopo	$M^{2\nu}$ (MoV ⁻¹)	$V_0^{ m exp}({ m MeV})$				
Isotope	$M_{\rm exp}({\rm Mev})$	DD-ME1	DD-ME2			
$^{76}\mathrm{Ge}$	0.140	-140.81	-145.27			
$^{82}\mathrm{Se}$	0.0984	-154.40	-156.50			
^{100}Mo	0.246	-175.82	-180.65			
$^{128}\mathrm{Te}$	0.0478	-167.48	-170.35			
$^{130}\mathrm{Te}$	0.0342	-175.52	-178.20			
¹³⁶ Xe	0.0192	-149.69	-154.71			

• The empirical isoscalar pairing strength formula proposed by fitting β -decay half-lives

$$V_0 = V_L + \frac{V_D}{1 + e^{a + b(N - Z)}},$$

Z. M. Niu et al. Phys. Lett. B 723, 172 (2013)

This formula is not good for $2\nu 2\beta$ decay

- Introduction
- Theoretical Framework
- $2\nu 2\beta$ NME calculated by Skyrme QRPA
- $2\nu 2\beta$ NME calculated by relativistic QRPA
- Summary and Perspective

With the spherical Skyrme QRPA model:

1. 11 observed $2\nu\beta\beta$ NME are calculated. The isoscalar pairing strengths are suggested.

2. Comparison between QTDA and QRPA is implemented. The ground-state correlation in QRPA largely suppresses the NME.

3. The cancellation mechanism of SSDH is studied. The isoscalar pairing could enlarge the ground state correlation so as to change the sign of GT+ transition amplitude.

With the spherical Relativistic QRPA model:

1. 6 observed $2\nu\beta\beta$ NME are calculated. The isoscalar pairing strengths are suggested, and compared with empirical formulas for β decay.

2. SSDH/LDSH nuclei are summarized.

Summary and Perspectives

Perspective

- Within QRPA approach
 - ✓ 0v ββ-decay matrix elements
 - ✓ Deformation effect
- Going beyond QRPA : QRPA+QPVC

 - ✓ 0ν ββ-decay matrix elements

Collaborators:

LZU: 吕万里 胡志成

IMP: 房栋梁

Sichuan Uni.: 白春林

Thank you!

Mean pairing gap:

Nucleus	48 Ca	$^{48}\mathrm{Ti}$	$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	$^{82}\mathrm{Se}$	82 Kr
$\Delta_n \mathrm{MeV}$	8 8	1.56	1.54	1.71	1.54	1.64
$\Delta_p \mathrm{MeV}$		1.90	1.57	1.75	1.42	1.72

Nucleus	$^{96}\mathrm{Zr}$	$^{96}\mathrm{Mo}$	$^{100}\mathrm{Mo}$	$^{100}\mathrm{Ru}$	$^{116}\mathrm{Cd}$	$^{116}\mathrm{Sn}$
Δ_n MeV	0.85	1.03	1.36	1.30	1.37	1.21
$\Delta_p \mathrm{MeV}$	1.54	1.53	1.60	1.55	1.46	

Nucleus	$^{128}\mathrm{Te}$	$^{128}\mathrm{Xe}$	$^{130}\mathrm{Te}$	$^{130}\mathrm{Xe}$	$^{136}\mathrm{Xe}$	136 Ba
Δ_n MeV	1.28	1.26	1.18	1.25		1.03
$\Delta_p \mathrm{MeV}$	1.13	1.32	1.06	1.31	1.01	1.27

Convergence check:

 $E_{\rm HFB} = 80 {\rm MeV}$; $\varepsilon_{\rm HF} = 60 {\rm MeV}$ is stable enough.

Convergence check:

The occupation amplitude cut-off in QRPA $|uv| > 10^{-4}$ is stable enough.

Convergence check:

For each QRPA state, the ph configuration with $|X_{ph}^2 - Y_{ph}^2| > 10^{-6}$ is considered.

Potential application in 0vββ decay

• Nuclear Matrix Element (NME) of 0vββ

$$M_{K}^{(0\nu)} = \sum_{J^{\pi},k_{1},k_{2},J'} \sum_{pp'nn'} (-1)^{j_{n}+j_{p'}+J+J'} \sqrt{2J'+1}$$

$$\times \begin{cases} j_{p} & j_{n} & J \\ j_{n'} & j_{p'} & J' \end{cases} (pp':J'||\mathcal{O}_{K}||nn':J')$$

$$\times (0_{f}^{+} ||[c_{p'}^{\dagger}\tilde{c}_{n'}]_{J}|(J_{k_{1}}^{\pi})\langle J_{k_{1}}^{\pi}|J_{k_{2}}^{\pi}\rangle (J_{k_{2}}^{\pi})[c_{p}^{\dagger}\tilde{c}_{n}]_{J} ||0_{i}^{+})$$

where

$$\mathcal{O}_{\text{GT}} = h_{\text{GT}}(r, E_k) \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$
$$h_K(r_{mn}, E_a) = \frac{2}{\pi} R_A \int dq \frac{q h_K(q^2)}{q + E_a - (E_i + E_f)/2} j_0(q r_{mn})$$

How do ground-state correlation make negative contribution?

$$\langle nJ||\hat{O}^{+}||0\rangle = \sum_{pn} (-)^{j_{p}+j_{n}+J} \langle j_{n}||\hat{O}^{+}||j_{p}\rangle [X_{pn}^{nJ}v_{p}u_{n} + \eta_{Y}Y_{pn}^{nJ}v_{n}u_{p}]$$

✓ At large f_{IS} :

|Y| is close to $X \longrightarrow$ negative contribution of higher-lying states

How do ground-state correlation influence the NME?

Ground-state correlation Y_{ph} mainly influences the GT⁺ transition.

• How do ground-state correlation make negative contribution?

$$\langle nJ||\hat{O}^{+}||0\rangle = \sum_{pn} (-)^{j_{p}+j_{n}+J} \langle j_{n}||\hat{O}^{+}||j_{p}\rangle [X_{pn}^{nJ}v_{p}u_{n} + \eta_{Y}Y_{pn}^{nJ}v_{n}u_{p}]$$

✓ At large f_{IS} :

|Y| is increased \rightarrow negative contribution of higher-lying states

The sign of GT+ amplitude will change for higher-lying states

✓ $\langle 1_{int}^+ || GT^- || 0_i^+ \rangle$ is almost independent from Y_{ph} ✓ $\langle 1_{int}^+ || GT^+ || 0_f^+ \rangle$ is sensitive to Y_{ph} , and its sign changes for higher-lying states.

Running sum of NME

 Running sum of NME as a function of excitation energy of intermediate states

$$E_n^{*(N)} = \frac{1}{2} \left(\left[(\Omega_n^i - \lambda_{\text{neu.}}^i + \lambda_{\text{pro.}}^i) + (\Omega_n^f + \lambda_{\text{neu.}}^f - \lambda_{\text{pro.}}^f) - (2M_N - M_i - M_f) \right] \right)$$

 f_{IS} is taken at the value that reproduces exp. data (or close)

Running sum of NME

• Running sum of NME as a function of excitation energy of intermediate states

$$E_n^{*(N)} = \frac{1}{2} \left(\left[(\Omega_n^i - \lambda_{\text{neu.}}^i + \lambda_{\text{pro.}}^i) + (\Omega_n^f + \lambda_{\text{neu.}}^f - \lambda_{\text{pro.}}^f) - (2M_N - M_i - M_f) \right] \right)$$

 f_{IS} is taken at the value that reproduces exp. data (or close)

Isoscalar pairing strength and SSDH/LLDH

Nucleus	⁴⁸ Ca	$^{76}\mathrm{Ge}$	⁸² Se	⁹⁶ Zr	$^{100}\mathrm{Mo}$
Expt. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	$0.046{\pm}0.004$	$0.136 {\pm} 0.007$	$0.100 {\pm} 0.005$	$0.097{\pm}0.005$	$0.223{\pm}0.006$
Theo. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	0.046	0.062	0.070	0.139	0.288
Theo. $M_{\rm GT}^{2\nu}({ m SSD})~({ m MeV^{-1}})$	0.035	0.054	0.015	0.230	0.570 <mark>(0</mark> .
Theo. $M_{\rm GT}^{2\nu}({\rm LLD}) \ ({\rm MeV^{-1}})$	0.036	0.125	0.098	0.234	0.407
$f_{ m IS}$	0.70	1.20	1.20	0.00	1.28

Nucleus	¹¹⁶ Cd	$^{128}\mathrm{Te}$	$^{130}\mathrm{Te}$	136 Xe	$^{150}\mathrm{Nd}$	$^{238}\mathrm{U}$
Expt. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	$0.127{\pm}0.004$	$0.056 {\pm} 0.007$	0.037 ± 0.005	$0.022{\pm}0.001$	$0.070 {\pm} 0.005$	$0.157\substack{+0.109\\-0.085}$
Theo. $M_{\rm GT}^{2\nu}$ (MeV ⁻¹)	0.139	0.037	0.021	0.022	0.071	0.140
Theo. SSD (0	14)< <u>0.001</u> (0	024) ^{0.040}	0.018	< 0.001	0.156	0.177
Theo. LLD	0.096	0.102	0.116	0.007	0.156	0.177
$f_{\rm IS}$	0.00	1.20	1.20	1.00	1.25	1.20

Exp. data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)

 $*g_A = 1.273$ is used to calculate the expt. $M_{\rm GT}^{2\nu}$

The upper limit of energy of LLD is 5MeV, except for ⁸²Se (2 states only).

✓ SSD nuclei: ⁴⁸Ca, ⁷⁶Ge, ¹²⁸Te, ¹³⁰Te, ²³⁸U

✓ LLD nuclei: ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd

Exp. data of SSD from O. Moreno, et al., J. Phys. G 36, 015106 (2009)

• Why does ground-state correlation play its role through GT+?

$$\begin{split} \langle J || \hat{O}^{-} || 0 \rangle &= \sum_{pn} - \langle j_{p} || \hat{O}^{-} || j_{n} \rangle [X_{pn}^{nJ} v_{n} u_{p} + Y_{pn}^{nJ} v_{p} u_{n}] \\ \langle J || \hat{O}^{+} || 0 \rangle &= \sum_{pn} (-)^{j_{p} + j_{n} + J} \langle j_{n} || \hat{O}^{+} || j_{p} \rangle [X_{pn}^{nJ} v_{p} u_{n} + Y_{pn}^{nJ} v_{n} u_{n}] \end{split}$$

¹²⁸Te: neutron-rich nucleus

- ✓ GT+ transitions: completely blocked at mean-field level
- ✓ pairing correlation: unblock the transition through X term
- ✓ Ground-state correlation: block/unblock the transition through Y term
- GT+ is sensitive to ground-state correlation

Nucleus	$^{76}\mathrm{Ge}$	$^{82}\mathrm{Se}$	¹⁰⁰ Mo	$^{128}\mathrm{Te}$	$^{130}\mathrm{Te}$	$^{136}\mathrm{Xe}$
$\operatorname{Expt.} M^{2\nu}(\operatorname{MeV}^{-1})$	0.140	0.0984	0.246	0.0478	0.0342	0.0192
Theo. $M^{2\nu}({ m MeV^{-1}})$	0.141	0.0993	0.210	0.0498	0.0343	0.0191
Theo. $M^{2\nu}(SSD)(MeV^{-1})$	0.0388	0.254	0.243	0.0241	0.00271	< 0.001
Theo. $M^{2\nu}(\text{LLD})(\text{MeV}^{-1})$	0.124	0.102	0.257	0.0322	0.0715	0.0139
$V_0({ m MeV})$	-145.27	-156.50	-180.65	-170.00	-180.20	-154.71

The upper limit of energy of LLD is 5MeV, except for ¹³⁰Te (E<1.8 MeV)

- ✓ SSD nuclei: ¹⁰⁰Mo
- ✓ LLD nuclei: ⁷⁶Ge, ⁸²Se, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe

 $2\nu\beta\beta$ through the 1st intermediate state. The similar case appears in ¹¹⁶Cd.

¹⁰⁰Mo当*f*_{IS}超过1.25后下降主要是因为更高能级的抵消。 ¹¹⁶Cd 的图没有画,因为中间核前几个态对矩阵元贡献近似为0

