$0\nu\beta\beta$ -decay: Non-standard Mechanisms and Long-range contributions

Gang Li (李刚)

ACFI, University of Massachusetts, Amherst

Workshop on neutrinoless double- β decay Zhuhai, May 21, 2021

Neutrinos: Dirac or Majorana?

Neutrino oscillation experiments imply that neutrinos are massive

 $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| \approx 2.5 \times 10^{-3} \text{ eV}^2$

 $m_2 > m_1$ through solar neutrino oscillation (with matter effects)

Dirac mass term

$$\mathcal{L}_D = -m_D(\bar{\nu}_L \nu_R + \text{h.c.})$$

 $\frac{\nu_L}{\langle H \rangle} \frac{\gamma^{\nu}}{\chi} \frac{\nu_R}{\gamma^{\nu}} \frac{\langle H \rangle}{\nu_L}$

Majorana mass term

$$\mathcal{L}_M = -\frac{m_M}{2} (\bar{\nu}_L \nu_L^c + \text{h.c.})$$

breaks the lepton number by two units

$0\nu\beta\beta$ -decay in a nutshell

 In order to probe the nature of massive neutrinos (are they their own antiparticles?), we need to study processes in which the total lepton number is not conserved

Furry, Phys. Rev. 56 (1939) 1184

$0\nu\beta\beta$ -decay in a nutshell

 In order to probe the nature of massive neutrinos (are they their own antiparticles?), we need to study processes in which the total lepton number is not conserved

Majorana neutrino mass:

Schechter, Valle Phys.Rev. D25 (1982) 774

An observation of $0\nu\beta\beta$ -decay implies

Majorana nature of neutrinos and lepton number violation regardless of the origin of the "black box"

$0 u\beta\beta$ -decay in a nutshell

• In nuclei ¹³⁶Xe, ⁷⁶Ge, et al,

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^ \begin{array}{c} AZ \\ Z \end{array}$ A: mass number, # of p, n Z: atomic number, # of p

summed energy of electrons $Q_{\beta\beta} \sim 2 MeV$

- β -decay is forbidden
- $0\nu\beta\beta$ -decay and $2\nu\beta\beta$ -decay are distinguishable

$0\nu\beta\beta$ -decay in a nutshell

• $0\nu\beta\beta$ -decay has not been observed yet

May 28, 2020

• The most stringent limit comes from KamLAND-Zen (¹³⁶Xe)

 $T_{1/2}^{0\nu} > 1.07 \times 10^{26}$ year

Phys.Rev.Lett. 117 (2016) 082503

• Plenty of future tonne-scale experiments are sensitive to $T_{1/2}^{0\nu} \gtrsim 10^{28}$ year

Elliott, BB Theory Workshop

	Experiment	Isotope	Mass	Technique	Present Status	Location
	CANDLES-III	⁴⁸ Ca	300 kg	CaF ₂ scint. crystals	Prototype	Kamioka
	GERDA	⁷⁶ Ge	$\approx 35 \text{ kg}$	^{enr} Ge semicond. det.	Operating	LNGS
	MAJORANA	⁷⁶ Ge	26 kg	^{enr} Ge semicond. det.	Operating	SURF
\rightarrow	CDEX-1T	⁷⁶ Ge	1 ton	^{enr} Ge semicond. det.	Prototype	CJPL
	LEGEND-200	⁷⁶ Ge	200 kg	^{enr} Ge semicond. det.	Construction	LNGS
	LEGEND-1000	⁷⁶ Ge	ton	^{enr} Ge semicond. det.	Proposal	
	CUPID-0	⁸² Se	5 kg	Zn ^{enr} Se scintillating bolometers	Prototype	LNGS
	SuperNEMO-Dem	⁸² Se	7 kg	^{enr} Se foils/tracking	Construction - 2019	Modane
	SuperNEMO	⁸² Se	100 kg	^{enr} Se foils/tracking	Proposal	Modane
	CMOS Imaging	⁸² Se		enrSe, CMOS	Development	
	AMoRE-Pilot	¹⁰⁰ Mo	1 kg	⁴⁰ Ca ¹⁰⁰ MoO ₄ Bolometers	Operation	YangYang
	AMoRE-I	¹⁰⁰ Mo	6 kg	⁴⁰ Ca ¹⁰⁰ MoO ₄ Bolometers	Construction - 2019	YangYang
	AMoRE-II	¹⁰⁰ Mo	200 kg	⁴⁰ Ca ¹⁰⁰ MoO ₄ Bolometers	Construction - 2020	Yemi
	CROSS	¹⁰⁰ Mo	5 kg	Li ₂ ¹⁰⁰ MoO ₄ surface coated Bolometers	Construction - 2020	Canfranc
	LUMINEU	¹⁰⁰ Mo		Li ^{enr} MoO ₄ , Zn ^{enr} MoO ₄ scint. bolometers	Development	LNGS, LSM
	Aurora	116Cd	1 kg	enrCdWO ₄ scintillating crystals	Development	LNGS
	COBRA-dem	116Cd	0.38 kg	^{nat} Cd CZT semicond. det.	Operation	LNGS
	Tin.Tin	124Sn	1 kg	Tin bolometers	Development	INO
	CALDER	130 Te	Incomposite 1	TeO ₂ bolometers with Cerenkov Light	Development	LNGS
	CUORE	130 Te	1 ton	TeO_2 bolometers	Operating	LNGS
	SNO+	¹³⁰ Te	1.3 t	0.5% ^{enr} Te loaded liq. scint.	Construction - 2020	SNOLab
	nEXO	136Xe	5 t	Liq. ^{enr} Xe TPC/scint.	Proposal	10.00 200
	NEXT-100	130Xe	100 kg	gas TPC	Prototype	Canfranc
	AXEL	130 Xe		gas TPC	Prototype	
	KamLAND-Zen	130 Xe	800 kg	en Xe disolved in liq. scint.	Operating	Kamioka
	LZ	130 Xe		Dual phase Xe TPC	Construction - 2020	SURF
	PANDAX-III	130 Xe	1 ton	Dual phase Xe TPC	Construction - 2019	CJPL
	XENON1T	130 Xe	1 ton	Dual phase Xe TPC	Operating	LNGS
	DARWIN	130 Xe	50 ton	Dual phase Xe TPC	Proposal	LNGS
	NuDot	Various		Cherenkov and scint. detection in liq. scint.	Development	
	FLARES	Various		Scint. crystals with Si photodetectors	Development	

incomplete list

6

$0\nu\beta\beta$ -decay in a nutshell

Connection to particle physics

 $G_{0\nu}$: phase space factor $(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ $M_{0\nu}$: nuclear matrix element effective Majorana mass $\langle m_{\beta\beta} \rangle$ half-life Factor of 2 10⁸ Sn-124 n-124 vary by a factor of 2-3 EDF Every 5.5 years 7 $T + \bullet \times +$ 107 Since about 1970 ORPA 6 II = *NSM 4d-150 Ga-76 Ge-76 Se-85 **IMSRG** Т 10⁶ 5 Mass Limit (meV) M⁰V 4 10⁵ Ţ e-128 3 Te-128 Ge-76 e-76 10⁴ 2 36 10^{3} 1 Previous claim 0 48 76 82 100 116 130 136 150 10² А Inverted Hierarchy Region 10¹ Engel, Menndez, Rept. Prog. 1940 1960 1980 2000 2020 Phys. 80 (2017) 046301 Year 7 S. Elliott, BB Theory Workshop '20

$0 u\beta\beta$ -decay in a nutshell

• Well-known Majorana mass (standard) mechanism

$0 u\beta\beta$ -decay in a nutshell

- Issues for interpretation of $0\nu\beta\beta$ -decay results
 - sizable NME uncertainties
 - value of lightest neutrino mass
 - discrimination of mass hierarchy

NH is favored over IH at 2.7σ with current neutrino oscillation data

P.F. de Salas et al, 2006.11237 (JHEP)

- An observation of $0\nu\beta\beta$ -decay is challenging in tonne-scale experiments
- It is even more worrying confronted with cosmological surveys

Cosmological bound

Sum of neutrino masses $\sum m_{
u} = m_1 + m_2 + m_3$

affect expansion rate of the Universe or clustering of matter

 $\Sigma m_{
u}$ depends on the lightest neutrino mass and $\Delta m^2_{21}, |\Delta m^2_{31}|$

Oscillation (+Planck): NH is favored over IH at $2.7\sigma(3.3\sigma)$

P.F. de Salas et al, 2006.11237 (JHEP)

CMB-S4 (operate in 2027), DESI (commissioning) et al: $\sigma(\Sigma m_{\nu} \lesssim 0.02 \text{ eV})$

NH and IH can be discriminated at 95% C.L.

Lesgourgues et al, 1808.05955 (JCAP)

$0 u\beta\beta$ -decay infronted with cosmology

challenging for a positive signal in $0\nu\beta\beta$ -decay experiments

F. Capozzi et al, 2003.08511 (PRD)

We need new mechanisms of $0 u\beta\beta$ -decay

Contribution from heavy BSM mechanisms could be comparable if $c \sim O(1)$, $\Lambda \sim \text{TeV}$

We need new mechanisms of $0 u\beta\beta$ -decay

Right-handed counterpart:

- $\sim G_F^2 m_\nu /p^2$
- long-range contribution

Mohapatra, Senjanovic, Marshak, Doi, et. al

We need new mechanisms of 0 uetaeta-decay

Right-handed counterpart:

 $\sim G_F^2 m_\nu /p^2$

$$\sim G_F^2 M_W^2/M_{W_R}^2 1/m_N$$

Mohapatra, Senjanovic, Marshak, Doi, et. al

Many possible scenarios:

- left-right symmetric model
- R-parity violating SUSY

• ...

Roadmap for model-dependent studies:

effective field theory approach

- systematical way: all LNV sources
- multi-scale involved: $TeV \rightarrow MeV$
- long-range contribution from heavy BSM mechanisms

Below the EW scale, $SU(3)_C \times U(1)_{em}$ invariant operators

dimension-9: $O_i \ \overline{e}(1 \pm \gamma_5)e^c$

In total, 24 non-redundant operators for $0
u\beta\beta$ -decay

Prezeau, Ramsey-Musolf, Vogel, Phys.Rev.D 68 (2003) 034016; Graesser JHEP 08 (2017) 099

$$\mathcal{O}_{1+}^{++} = (\bar{q}_{\mathrm{L}}^{\alpha}\tau^{+}\gamma^{\mu}q_{\mathrm{L}}^{\alpha})(\bar{q}_{\mathrm{R}}^{\beta}\tau^{+}\gamma_{\mu}q_{\mathrm{R}}^{\beta}), \quad \mathcal{O}_{1+}^{++\prime} = (\bar{q}_{L}^{\alpha}\tau^{+}\gamma^{\mu}q_{L}^{\beta})(\bar{q}_{R}^{\beta}\tau^{+}\gamma_{\mu}q_{\mathrm{R}}^{\alpha})$$
$$\mathcal{O}_{3\pm}^{++} = (\bar{q}_{\mathrm{L}}^{\alpha}\tau^{+}\gamma^{\mu}q_{\mathrm{L}}^{\alpha})(\bar{q}_{\mathrm{L}}^{\beta}\tau^{+}\gamma_{\mu}q_{\mathrm{L}}^{\beta}) \pm (\bar{q}_{\mathrm{R}}^{\alpha}\tau^{+}\gamma^{\mu}q_{\mathrm{R}}^{\alpha})(\bar{q}_{\mathrm{R}}^{\beta}\tau^{+}\gamma_{\mu}q_{\mathrm{R}}^{\beta})$$

left-right symmetric model

$$\mathcal{O}_{2\pm}^{++} = (\bar{q}_{\mathrm{R}}^{\alpha}\tau^{+}q_{\mathrm{L}}^{\alpha})(\bar{q}_{\mathrm{R}}^{\beta}\tau^{+}q_{\mathrm{L}}^{\beta}) \pm (\bar{q}_{\mathrm{L}}^{\alpha}\tau^{+}q_{\mathrm{R}}^{\alpha})(\bar{q}_{\mathrm{L}}^{\beta}\tau^{+}q_{\mathrm{R}}^{\beta}) \qquad \text{RPV SUSY}$$

$$\alpha, \beta$$
 are color indices, $q = (u, d)^T$, $\tau^+ = (\tau^1 + i\tau^2)/2$
subscript ± denotes parity-even(odd)

+ more operators

Map quark operators to hadronic operators using chiral effective field theory, which transform in the same way under chiral $\rm SU(2)_L \times SU(2)_R$

$$\xi = \exp\left(\frac{i\Pi}{\sqrt{2}F_{\pi}}\right) \qquad \Pi = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} & \pi^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} \end{pmatrix}$$

$$X_R^a = \xi \tau^a \xi^{\dagger}, \quad X_L^a = \xi^{\dagger} \tau^a \xi, \quad X^a = \xi \tau^a \xi$$

Prezeau, Ramsey-Musolf, Vogel, Phys.Rev.D 68 (2003) 034016

 $\mathcal{O}_{1+}^{++}, \mathcal{O}_{1+}^{++\prime} \to \operatorname{tr}[X_L^+ X_R^+ + X_R^+ X_L^+]$ = $\frac{4}{F_\pi^2} \pi^- \pi^- + \cdots$

 $\overline{e}(1\pm\gamma_5)e^c$

LO $\pi\pi ee$

$$\mathcal{O}_{2+}^{++} \to \operatorname{tr}[X^+X^+ + X^{+\dagger}X^{+\dagger}]$$

= $-\frac{4}{F_{\pi}^2}\pi^-\pi^- + \cdots$

Notice: for light neutrino exchange ~ $G_F^2 m_{\nu}/p^2$

$$\mathcal{A}^{\mathrm{LO}} \sim p^{-2}$$

long-range contribution

Map quark operators to hadronic operators using chiral effective field theory, which transform in the same way under chiral $\rm SU(2)_L \times SU(2)_R$

$$\xi = \exp\left(\frac{i\Pi}{\sqrt{2}F_{\pi}}\right) \qquad \Pi = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} & \pi^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} \end{pmatrix}$$

$$X_R^a = \xi \tau^a \xi^{\dagger}, \quad X_L^a = \xi^{\dagger} \tau^a \xi, \quad X^a = \xi \tau^a \xi$$

Prezeau, Ramsey-Musolf, Vogel, Phys.Rev.D 68 (2003) 034016

$$\mathcal{O}_{3+}^{++} \to \operatorname{tr}[X_L^+ X_L^+ + X_R^+ X_R^+] = 0$$

NNLO $\pi\pi ee$

$$\mathcal{O}_{3+}^{++} \to \frac{1}{2} \text{tr}[D^{\mu}X_{L}^{+}D_{\mu}X_{L}^{+} + D^{\mu}X_{R}^{+}D_{\mu}X_{R}^{+}]$$
$$= -\frac{1}{F_{\pi}^{2}}(\partial_{\mu}\pi^{-})^{2} + \cdots,$$

$$\mathcal{A}^{\mathrm{NNLO}} \sim p^0$$

a factor of 20 !!

V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti 1806.02780 (JHEP)

Long-range contributions from LO $\pi\pi ee$ are the leading ones

EFT w/o chiral EFT approach

• Map quark bilinear to single-nucleon current

consistent ChPT to NNLO for one-nucleon system

• It works well the standard mechanism with the exchange of light neutrinos

factorize the amplitude of $0\nu\beta\beta$ -decay into two β -decay

 Use vacuum saturation approximation to factorize four-quark operators into two quark bilinears
 LECs could be a factor of 2 different

LRSM: Doi, Kotani, Nishiura, Takasugi '81; Barry, Rodejohann 1303.6324 (JHEP) SUSY&EFT: Hirsch, Klapdor-Kleingrothaus, Kovalenko, Pas '95-'98 EFT: Graf, Deppisch, Iachello, Kotila 1806.06058 (PRD)

EFT w/o chiral EFT approach

• Map quark bilinear to single-nucleon current

consistent ChPT to NNLO for one-nucleon system

• It works well the standard mechanism with the exchange of light neutrinos

factorize the amplitude of $0\nu\beta\beta$ -decay into two β -decay

- Use vacuum saturation approximation to factorize four-quark operators into two quark bilinears
 LECs could be a factor of 2 different
- The failure of applying single-nucleon current to the non-standard mechanism: no $\pi\pi ee$; inconsistent by itself

Minimal left-right symmetric model

Gauge group: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Doublets:

$$q_{L} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \qquad \qquad q_{R} = \begin{pmatrix} u \\ d \end{pmatrix}_{R}$$
$$L_{L} = \begin{pmatrix} \nu \\ l \end{pmatrix}_{L} \qquad \qquad L_{R} = \begin{pmatrix} N \\ l \end{pmatrix}_{R}$$

 $\Phi = egin{pmatrix} \phi_1^0 & \phi_2^+ \ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Longrightarrow \quad \langle \Phi
angle = egin{pmatrix} v_1 & 0 \ 0 & v_2 e^{ilpha} \end{pmatrix}$

Mohapatra and Senjanovic, Phys.Rev.Lett. 44 (1980) 912, Phys.Rev.D 23 (1981) 165

Bidoublet:

Triplets:

$$\Delta_{L,R} = egin{pmatrix} \delta^+_{L,R}/\sqrt{2} & \delta^{++}_{L,R} \ \delta^0_{L,R} & -\delta^+_{L,R}/\sqrt{2} \end{pmatrix}$$

$$\implies \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix}, \qquad \langle \Delta_L \rangle = \begin{pmatrix} 0 & 0 \\ v_L e^{i\theta_L} & 0 \end{pmatrix}$$

provide a natural origin of neutrino masses

Leading contribution from $W_L - W_R$ mixing

left-right $(W_L - W_R)$ mixing:

$$W_L = \cos \xi W_{1\mu}^+ - \sin \xi \ e^{-i\alpha} W_{2\mu}^+,$$
$$W_R = \sin \xi \ e^{i\alpha} W_{1\mu}^+ + \cos \xi W_{2\mu}^+.$$

$$W_L \simeq W_1, \, W_R \simeq W_2$$

No $W_L - W_R$ mixing (i,j)=(R,R) $u_R d_R u_R d_R e_R e_R$

 $W_L - W_R$ mixing (i,j)=(1,2) $u_L d_L u_R d_R e_R e_R$

Leading contribution from $W_L - W_R$ mixing

Leading contribution from $W_L - W_R$ mixing

After integrating out W_1 , W_2 and N_R

$$\mathcal{L}_{eff} = \frac{G_F^2}{\Lambda_{\beta\beta}} \Big[C_{3R} (\mathcal{O}_{3+}^{++} - \mathcal{O}_{3-}^{++}) (\bar{e}e^c - \bar{e}\gamma_5 e^c) + C_1 \mathcal{O}_{1+}^{++} (\bar{e}e^c - \bar{e}\gamma_5 e^c) \Big]$$

$$\mathcal{O}_{3+}^{++} - \mathcal{O}_{3-}^{++} = 2(\bar{q}_R^{\alpha} \tau^+ \gamma^{\mu} q_R^{\alpha}) (\bar{q}_R^{\beta} \tau^+ \gamma_{\mu} q_R^{\beta}) \qquad C_{3R} = \lambda^2 \qquad \lambda \equiv \frac{M_W^2}{M_{W_R}^2}$$

$$\mathcal{O}_{1+}^{++} = (\bar{q}_L^{\alpha} \tau^+ \gamma^{\mu} q_L^{\alpha}) (\bar{q}_R^{\beta} \tau^+ \gamma_{\mu} q_R^{\beta}) \qquad C_1 = -4\lambda\xi$$

$$\tan \xi = \frac{v_1 v_2}{v_R^2} = \lambda \sin(2\beta) \qquad \qquad \lambda \equiv \frac{M_W^2}{M_{W_R}^2} \quad \tan \beta = \frac{v_2}{v_1}$$

LHC direct searches, kaon and B meson mass mixing

 $M_{W_R} \geq 4.8 ~{\rm TeV} \Longrightarrow \lambda \leq 2.8 \times 10^{-4}$

perturbativity bound, CKM unitarity, EW precision $\tan\beta \lesssim 0.5$ or $\sin 2\beta \lesssim 0.8$

Inverse of half-life for $0\nu\beta\beta$ -decay:

$$\begin{split} \left| (T_{1/2}^{0\nu})^{-1} &= G_{0\nu} \cdot \mathcal{M}_{\nu}^{2} \left(|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2} \right) \qquad |m_{\beta\beta}| = \sqrt{|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2}} \\ \left| m_{\nu}^{ee} &= \sum_{i=1}^{3} |V_{Lei}|^{2} m_{\nu_{i}} \quad \text{contribution from the standard mechanism} \right| \\ |m_{N}^{ee}|^{2} &= \frac{\Lambda_{\chi}^{4}}{72\Lambda_{\beta\beta}^{2}} \frac{\mathcal{M}_{0}^{2}}{\mathcal{M}_{\nu}^{2}} \times \left[(\beta_{1} - \zeta_{5}\delta_{N\pi} - \beta_{3}\delta_{\pi\pi} + \xi_{1}\delta_{NN})^{2} \\ &+ (\beta_{2} - \zeta_{6}\delta_{N\pi} - \beta_{4}\delta_{\pi\pi} + \xi_{4}\delta_{NN})^{2} \right] \\ \delta_{\pi\pi} &= \frac{2m_{\pi}^{2}}{\Lambda_{\chi}^{2}} \frac{\mathcal{M}_{2}}{\mathcal{M}_{0}}, \qquad \delta_{N\pi} &= \frac{\sqrt{2}m_{\pi}^{2}}{g_{A}\Lambda_{\chi}m_{N}} \frac{\mathcal{M}_{1}}{\mathcal{M}_{0}}, \\ \delta_{NN} &= \frac{12m_{\pi}^{2}}{g_{A}^{2}\Lambda_{\chi}^{2}} \frac{\mathcal{M}_{NN}}{\mathcal{M}_{0}}. \end{split}$$
Notice: recent development in NME/contact term for standard mechanism, see works by V. Cirigliano et al; J. M. Yao, et al.; \\ &\sim +40\% \end{split}

GL, Ramsey-Musolf and Vasquez, 2009.01257 (PRL)

Inverse of half-life for $0\nu\beta\beta$ -decay:

$$\begin{split} |(T_{1/2}^{0\nu})^{-1} &= G_{0\nu} \cdot \mathcal{M}_{\nu}^{2} \left(|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2} \right) & |m_{\beta\beta}| = \sqrt{|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2}} \\ m_{\nu}^{ee} &= \sum_{i=1}^{3} |V_{Lei}|^{2} m_{\nu_{i}} \\ |m_{N}^{ee}|^{2} &= \frac{\Lambda_{\chi}^{4}}{72\Lambda_{\beta\beta}^{2}} \frac{\mathcal{M}_{0}^{2}}{\mathcal{M}_{\nu}^{2}} \times \left[\left(\beta_{1} \left(-\zeta_{5}\delta_{N\pi} - \beta_{3}\delta_{\pi\pi} + \xi_{1}\delta_{NN} \right)^{2} \right) + \left(\beta_{2} \left(-\zeta_{5}\delta_{N\pi} - \beta_{4}\delta_{\pi\pi} + \xi_{4}\delta_{NN} \right)^{2} \right) \right] \\ &+ \left(\beta_{2} \left(-\zeta_{6}\delta_{N\pi} - \beta_{4}\delta_{\pi\pi} + \xi_{4}\delta_{NN} \right)^{2} \right) \right] \\ \delta_{\pi\pi} &= \frac{2m_{\pi}^{2}}{\Lambda_{\chi}^{2}} \frac{\mathcal{M}_{2}}{\mathcal{M}_{0}}, \qquad \delta_{N\pi} = \frac{\sqrt{2}m_{\pi}^{2}}{g_{A}\Lambda_{\chi}m_{N}} \frac{\mathcal{M}_{1}}{\mathcal{M}_{0}}, \qquad \text{sub-leading terms} \\ \delta_{NN} &= \frac{12m_{\pi}^{2}}{g_{A}^{2}\Lambda_{\chi}^{2}} \frac{\mathcal{M}_{NN}}{\mathcal{M}_{0}}. \end{split}$$

GL, Ramsey-Musolf and Vasquez, 2009.01257 (PRL)

Inverse of half-life for $0\nu\beta\beta$ -decay:

 $\delta_{\pi\pi}$

$$\begin{split} (T_{1/2}^{0\nu})^{-1} &= G_{0\nu} \cdot \mathcal{M}_{\nu}^{2} \left(|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2} \right) & |m_{\beta\beta}| = \sqrt{|m_{\nu}^{ee}|^{2} + |m_{N}^{ee}|^{2}} \\ m_{\nu}^{ee} &= \sum_{i=1}^{3} |V_{Lei}|^{2} m_{\nu_{i}} \\ |m_{N}^{ee}|^{2} &= \frac{\Lambda_{\chi}^{4}}{72\Lambda_{\beta\beta}^{2}} \frac{\mathcal{M}_{0}^{2}}{\mathcal{M}_{\nu}^{2}} \times \left[\left(\beta_{1} - \zeta_{5} \delta_{N\pi} - \beta_{3} \delta_{\pi\pi} + \xi_{1} \delta_{NN} \right)^{2} \right] & \beta_{1} = -\beta_{2} = \ell_{1}^{\pi\pi} C_{1} + \ell_{1}^{\pi\pi\prime} C_{1}^{\prime} \\ &+ \left(\beta_{2} - \zeta_{6} \delta_{N\pi} - \beta_{4} \delta_{\pi\pi} + \xi_{4} \delta_{NN} \right)^{2} \right] & \ell_{1}^{\pi\pi} = -(0.71 \pm 0.07) \\ &+ \left(\beta_{2} - \zeta_{6} \delta_{N\pi} - \beta_{4} \delta_{\pi\pi} + \xi_{4} \delta_{NN} \right)^{2} \right] \\ LECs: & \ell_{1}^{\pi\pi} = 0.60 \pm 0.03 \\ \delta_{\pi\pi} &= \frac{2m_{\pi}^{2}}{\Lambda_{\chi}^{2}} \frac{\mathcal{M}_{2}}{\mathcal{M}_{0}}, & \delta_{N\pi} = \frac{\sqrt{2}m_{\pi}^{2}}{g_{A}\Lambda_{\chi}m_{N}} \frac{\mathcal{M}_{1}}{\mathcal{M}_{0}}, & NMEs \text{ for } ^{136} Xe: \\ &= 0.046, \ \delta_{N\pi} = 0.042, \ \delta_{NN} = 0.063 \\ \approx \text{ chiral power counting} \sim 1/20 & Hyvarinen, Subnene Phys.Rev.C \\ &= 12m_{1}^{2} (2015) 024613 & 28 \end{split}$$

A large portion of parameter space could give a positive signal after including leading contribution from LO $\pi\pi ee$ interaction from W_L - W_R mixing

A large portion of parameter space could give a positive signal after including leading contribution from LO $\pi\pi ee$ interaction from W_L - W_R mixing

$0\nu\beta\beta\text{-decay}$ in minimal LRSM

Including cosmological constraints:

Good prospects for a positive signal even confronted with future cosmological surveys

GL, Ramsey-Musolf and Vasquez, 2009.01257 (PRL)

Intermediate summary

 We show the importance of long-range contribution from heavy BSM mechanism in neutrino mass models with minimal left-right symmetric model as an example

• More generally, it is necessary to use chiral EFT to deal with $0\nu\beta\beta$ -decay in non-standard mechanisms

General procedure

Approach to $0\nu\beta\beta$ -decay in non-standard mechanisms:

- start with a given BSM model
- integrate out heavy fields and obtain LNV operators (matching)
- map quark operators onto hadronic operators using chiral EFT

LECs are obtained using lattice QCD or naive dimensional analysis

calculate inverse half-life and compare with experimental limits

 $(T_{1/2}^{0\nu})^{-1} \sim G_{0\nu} |\langle 0^+| \sum_{m,n} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{r}} \mathcal{A}(\mathbf{p}^2) |0^+\rangle|^2 \qquad \text{Fourier transformation} \text{ sum over all nucleons}$

Prezeau, Ramsey-Musolf, Vogel, Phys.Rev.D 68 (2003) 034016 V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti 1806.02780 (JHEP); 1708.09390 (JHEP)

Wilson Coeff² × LEC² × NME²

NMEs are obained using many-body methods: QRPA, IBM, shell, etc.

General procedure

Approach to $0\nu\beta\beta$ -decay in non-standard mechanisms:

- start with a given BSM model
- integrate out heavy fields and obtain LNV operators (matching)
- map quark operators onto hadronic operators using chiral EFT

LECs are obtained using lattice QCD or naive dimensional analysis

• calculate inverse half-life and compare with experimental limits

 $(T_{1/2}^{0\nu})^{-1} \sim G_{0\nu} |\langle 0^+| \sum_{m,n} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{r}} \mathcal{A}(\mathbf{p}^2) |0^+\rangle|^2$

Prezeau, Ramsey-Musolf, Vogel, Phys.Rev.D 68 (2003) 034016 V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti 1806.02780 (JHEP); 1708.09390 (JHEP)

Wilson Coeff² × LEC² × NME²

Fourier transformation sum over all nucleons

it may involve several steps

it depends on the LNV interactions

NMEs are obained using many-body methods: QRPA, IBM, shell, etc

$0\nu\beta\beta$ -decay: intermediate mass region

Two regions: $p^2 \gg m^2$ and $p^2 \ll m^2$ with the mean momentum transfer $p \sim 200~{\rm MeV}$

$0\nu\beta\beta$ -decay: intermediate mass region

Two regions: $p^2 \gg m^2$ and $p^2 \ll m^2$ with the mean momentum transfer $p \sim 200 \text{ MeV}$

V. Cirigliano, et al 1806.02780 (JHEP) 9 basic NMEs M_l

How about the intermediate mass region $m^2 \sim p^2$?

$0\nu\beta\beta$ -decay: intermediate mass region

For illustration, consider sterile neutrino ν_4

$0 u\beta\beta$ -decay: intermediate mass region

Smooth transition with the increase of m_4

Also in well-motivated UV complete models

Jordy de Vries, GL, Michael Ramsey-Musolf, Shufang Su, Juan Carlos Vasquez, in preparation

Summary

- $0\nu\beta\beta$ -decay can provide direct evidence for Majorana neutrino mass and lepton number violation, hence physics beyond the SM
- We show that in the EFT approach, the long-range contribution from non-standard mechanism can dominate over other contributions
- If new particle contributing to $0\nu\beta\beta$ -decay is in the intermediate mass region, mass dependence captured by the LECs and NMEs should be dealt with consistently in EFT approach
- An interplay of $0\nu\beta\beta$ -decay with other probes (yet not be covered)

Summary

- $0\nu\beta\beta$ -decay can provide direct evidence for Majorana neutrino mass and lepton number violation, hence physics beyond the SM
- We show that in the EFT approach, the long-range contribution from non-standard mechanism can dominate over other contributions
- If new particle contributing to $0\nu\beta\beta$ -decay is in the intermediate mass region, mass dependence captured by the LECs and NMEs should be dealt with consistently in EFT approach
- An interplay of $0\nu\beta\beta$ -decay with other probes (yet not be covered)

Thanks for your attention!

Neutrino masses

Yukawa interactions

$$\begin{split} \mathcal{L}_{Y} &= \bar{L}_{L} (Y_{\Phi} \Phi + \tilde{Y}_{\Phi} \tilde{\Phi}) L_{R} + \frac{1}{2} (L_{L}^{T} C i \sigma_{2} Y_{\Delta_{L}} \Delta_{L} L_{L} \\ &+ L_{R}^{T} C i \sigma_{2} Y_{\Delta_{R}} \Delta_{R} L_{R}) + \text{H.c.}, \end{split}$$

provide a natural origin of neutrino masses:

Left-right mixing

 ξ and λ are related:

$$\tan \xi = \frac{v_1 v_2}{v_R^2} = \lambda \sin(2\beta) \qquad \qquad \lambda \equiv \frac{M_W^2}{M_{W_R}^2} \quad \tan \beta = \frac{v_2}{v_1}$$

- ξ alone is constrained with the CKM unitarity, using mostly precise $|V_{ud}|, \xi \le 1.25 \times 10^{-3}$ Lett. 121, 241804 (2018)
- The most severe flavor constraints comes from kaon and B meson mass mixing, excluding $M_{W_B} < 2.9 {\rm \ TeV}$

```
Bertolini, Maiezza, Nesti Phys.Rev.D 89 (2014) 095028
```

• Direct searches for W_R exclude $M_{W_R} < 4.8$ TeV, which imples $\lambda \le 2.8 \times 10^{-4}$ (set stronger bound on ξ) CMS JHEP 05 (2018) 148

the upper bound on ξ depends on the value of β

Left-right mixing

• There is no experimental bound on β in the minimal LRSM

Senjanovic and Tello Phys. Rev. Lett. 114, 071801 (2015); Phys. Rev. D 94, 095023 (2016)

• The theoretical bound is obtained requirng perturbativity of Yukawa coupling of heavy Higgs boson

$$\frac{m_t}{v\cos(2\beta)} \lesssim 1 \quad \Longrightarrow \quad \tan\beta \lesssim 0.5$$