⁷⁶Ge-0vββ实验综述和CDEX-300v

杨丽桃 清华大学 CDEX合作组

"无中微子双贝塔衰变"研讨会, 2021年5月19日-23日,广东珠海 CJPL 📥

中国锦屏地下实验室 China Jinping Underground Laboratory

清华大学·雅砻江流域水电开发有限公司

中微子性质研究

- 中微子性质研究是物理学 重大前沿科学问题;
- 中微子质量不为零,突破 了粒子物理标准模型框架;
- 中微子性质研究重要课题:
 - ✔ 中微子绝对质量
 - ✔ 中微子质量层级
 - ✓ 中微子是否是自身反粒子✓ ……

Nobel Prize in Physics 2015

Takaaki Kajita

Arthur B. McDonald

"For the discovery of neutrino oscillations, which shows that neutrinos have mass"

0νββ实验物理目标

● 0νββ实验物理目标:

✓ 确定中微子是否是其自身反粒子(<10meV, →5meV, → 1meV)</p>

✔ 中微子质量层级(~14meV)(多个实验: JUNO, DUNE等)

需要理论和实验紧密结合,推动0νββ研究不断发展。

0νββ实验方法

- 实验测量可能的0vββ衰变事例,确认是否发生了0vββ衰变 过程;
- 实验已经测量到多个同位素的2νββ衰变事例,并且给出了 对应的2νββ半衰期的实验值;
- 对于本底控制和信号甄别技术要求极其苛刻。即使U、Th 及宇生等环境和材料本底控制得好,2vββ事例将不可避免 的成为无法完全消除的物理本底。

0νββ实验可能同位素

- 经过数十年的发展,目前最重要的0vββ实验的候选同位素
 包括: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, ...;
- 基于这些同位素的0νββ实验技术可以有不同的选择:

Isotope	Q _{ββ} (KeV)	Natural abundance (%)	2vββ Half-life (10 ²¹ year)	0vββ Half-life (10 ²⁶ year)	Detector	
⁷⁶ Ge→ ⁷⁶ Se	2039	7.8	1.926	1.8 (Gerda)	HP ⁷⁶ Ge	
¹³⁰ Te→ ¹³⁰ Xe	2528	34.5	0.820	0.15 (CUORE)	¹³⁰ TeO2	
¹³⁶ Xe→ ¹³⁶ Ba	2479	8.9	2.165	1 (Kamland-Zen)	LS(¹³⁶ Xe)、TPC	
⁴⁸ Ca→ ⁴⁸ Ti	4271	0.187	0.064			
⁸² Se→ ⁸² Kr	2995	9.2	0.096	0.05 (CUPID-0)	ZnSe、TPC	
⁹⁶ Zr→ ⁹⁶ Mo	3350	2.8	0.024			
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3034	9.6	0.007		LMO	
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3367	5.6	0.009			

0νββ实验可能同位素

 一些0vββ实验给出 了具有竞争力的实 验结果:⁷⁶Ge,¹³⁶Xe,
 ¹³⁰Te等;

 基于这些同位素的 0vββ实验技术可以 有不同的选择:半 导体探测器、超低 温量热器、TPC(不 同信号读出方式)、 LS-doped,.....。

Experiment	Iso	Exposure [kg-yr]	$[10^{25} {\rm yr}]$	$\langle m_{\beta\beta} \rangle$ [meV]	
Gerda [4]	76 Ge	127.2	18	80 - 182	
Majorana [2]	$^{76}\mathrm{Ge}$	26	2.7	200 - 433	
KamLAND-Zen [1]	$^{136}\mathrm{Xe}$	594	10.7	61 - 165	
EXO [87]	136 Xe	234.1	3.5	93 - 286	
CUORE [88]	$^{130}\mathrm{Te}$	115.9	1.5	110 - 520	

0νββ实验主要技术

- 高纯锗探测器技术(⁷⁶Ge)
 ---Gerda, Majorana, CDEX, LEGEND.....
- 闪烁体量能器技术(Li¹⁰⁰MO、¹³⁰TeO₂) ---CUPID-CJPL, CUPID, CUORE, AMORE,.....
- 液体闪烁体(¹³⁶Xe、¹³⁰Te)
 --- Kamland-Zen, SNO+, JUNO-0vββ,.....
- 时间投影室(TPC)(¹³⁶Xe、⁸²Se)
 ---nEXO, PandaX, NvDEx,

⁷⁶Ge 0vββ实验

9

■ 特点:

- ✓ 靶核=探测器
- ✓ 锗晶体纯度极高(12-13N)
- ✓ 能量分辨率极高:
- ✓ ~0.1%@ 2MeV(2.5keV FWHM)
- ✓ ⁷⁶Ge富集到86%以上,技术稳定可靠
- ✓ 脉冲波形甄别、单点/多点事例、反符合等
 CDEX-1
 GERDA Phase

MAJORANA DEMONSTRATOR

高纯锗探测器技术

PCGe

BEGe

ICPC

Co-axial

GERDA (GERmanium Detector Array)

- ✓ 意大利格兰萨索地下实验室(1400m)
- ✓ 富集锗 + 液氩反符合
- ✓ 第一阶段目标:

15 kg·yr, 10⁻² cts/(keV·kg·year)

✓ 第二阶段目标:

40 kg·yr, 10^{-3} cts/(keV·kg·year)

GERDA Phase-II最新结果

✓ 41个富集锗探测器,共44.2kg

- 6个同轴(14.6 kg)
- 30个宽能阈(20 kg)
- 5个反向同轴(9.6 kg)
- ✓ Phase I + Phase II累计曝光量127.2 kg·yr
- ✓ 本底超预期, 5.2×10⁻⁴ cts/(keV·kg·year),本底最低
- ✓ 未发现0vββ信号, T_{1/2}>1.8×10²⁶ yr (90% C.L.), 半衰期最长

MAJORANA DEMONSTRATOR

- ✔ 美国SURF地下实验室(1500m)
- ✓ 点电极高纯锗 + 真空低温恒温器
 29.7kg富集锗 + 14.4kg天然锗
- ✓ 目前最好的能量分辨率:
 2.5 keV FWHM@2039 keV
- ✓ 使用地下电解铜等超纯材料✓ 开发了低噪声前端电子学

Majorana最新结果

- ✓ 2019年8月发表26.0 kg·yr富集锗的分析结果
- ✓ 能量分辨率2.5 keV FWHM@2039 keV, 目前最佳
- ✓ 本底水平4.7±0.8 ×10⁻³ cts/(keV·kg·year)
- ✔ 未发现0vββ信号,*T_{1/2}>2.*7×10²⁵ yr (90% C.L.)

11.9±2.0 cts/(FWHM t yr)

 $m_{\beta\beta}$ <200-433 meV

CDEX

LEGEND

- ✓ 全球52家单位的~250位研究人员
- ✓ 物理目标: T^{0ν}_{1/2} > 10²⁸ yr, m_{ββ}<10-22 meV
 ✓ 两个阶段: LEGEND-200 和 LEGEND-1000
- □ 第一阶段:
- 200kg
- 意大利LNGS
- 升级GERDA装置
- 2021年底开始运行
- 本底目标: 1×10⁻⁴ cts/(keV kg yr)

- □ 第二阶段:
- 1000kg
- 实验地点未定
- 技术方案未定
- 时间未定
- 本底目标: 1×10⁻⁵ cts/(keV kg yr)

LEGEND-200

LEGEND

LEGEND-1000

LEGEND-1000 background Goal

 ▶ 物理目标: T^{0v}_{1/2} > 10²⁸ yr
 ▶ 本底目标: 1×10⁻⁵ cts/(keV·kg·yr)
 ▶ 需要大幅降低⁴²K本底、宇宙线本 底、探测器表面事例本底等
 ▶ 实验地点/技术方案/时间线待定

LEGEND

✓ 目前是美国为主推动,向US DOE申请经费;

✓ 2018年开始, DownSelection一直延期, 至今没有明确方案。

CDEX"盘古"合作组

CDEX Roadmap CDEX-50dm (DM) **CDEX-1000** CDEX-1 CDEX-10 **CDEX-300v** (0νββ) 2009-2016 2016-2020 2021-

CDEX物理成果

Physics Channels	Detectors	Analysis Exposur Threshold (eV) (kg×day		Publications
Chi-N SI	CDEX-1A	400	14.6	PRD 88, 052004, 2013
Chi-N SI	CDEX-20g	177	0.784	PRD 90, 032003, 2014
Chi-N SI	CDEX-1A	475	53.9	PRD 90, 091701, 2014
Chi-N SI/SD	CDEX-1A	475	335.6	PRD 93, 092003, 2016
Axion	CDEX-1A	475	335.6	PRD 95, 052006, 2017
Ονββ	CDEX-1A	<u> </u>	304.0	Sci. China 60, 071011, 2017
Chi-N SI/SD	CDEX-1B	160	737.1	CPC 42, 023002, 2018
Chi-N SI/SD	CDEX-10	160	102.8	PRL 120, 241301, 2018
Migdal Effect	CDEX-1B	160	737.1	PRL 123, 161301, 2019
Chi-N AM	CDEX-1B	250	1107.5	PRL 123, 221301, 2019
Axion	CDEX-1B	160	737.1	PRD 101, 052003, 2020
Dark Photon	CDEX-10	160	205.4	PRL 124, 111301, 2020
Chi-N EFT	CDEX-10	160	205.4	arXiv:2007.15555

CDEX-300v

- 7串,每串~30个高纯锗晶体
- 锗探测器总质量:~300kg
- 探测器类型:
 - ✓ BEGe (Baseline)
 - ✓ ICPC (optional)

CDEX-300v Detectors

- BEGe (Baseline)
 - ---Mass: 1-1.2 kg;
 - ---Size: φ80mm*40mm;
 - ---Dead layer: 0.6mm;
 - ----E_r: <0.15%@2MeV;
 - ----**BI: 1 × 10⁻⁴ cts/(keV·kg·yr)** --- $T_{1/2}$: >10²⁷ yr

- ICPC (optional)
 - ----Mass: ~2 kg;
 - ---Size: φ80mm*80mm;
 - ---Dead layer: 0.6mm;

CDEX-300v Detectors

Baseline: BEGe + LAr (反符合)

R&D:

- 探测器密封在亚克力壳中;隔离锗晶体与外部LAr;
- 电子学安装在亚克力壳外表面;
- 液氩反符合,光读出采用SiPM + 移波光纤
- 使用高纯钛制作液氩容器;

CDEX-300v

- 液氮罐顶部安装洁净间,用于高纯 锗探测器及光纤安装;
- 液氮冷却液氩,同时屏蔽外部本底;
- 2022年初开始富集锗探测器在液氮/
 液氩中的性能和稳定运行测试;

本底来源

- CDEX-300v目标 1×10⁻⁴ cts/(keV kg yr) @2039keV
- 为达到目标本底,需分析各种本底来源、进行优化控制

	本底类别	主要来源	降低途径	备注
1、环境本 底	宇宙线缪子、环 境伽马和中子	环境	深地、实验室材料控制	
2、屏蔽材 料本底	屏蔽材料的宇生、 原生放射核素	屏蔽材料	屏蔽设计、材料优化	
3、探测器 自身本底	高能 γ 射线在低 能区的连续 Compton平台	电子学部件、电缆、结构 材料等	选用更纯的电子学部件、 电缆,采用自制超高纯 电解铜	
	宇生非锗核	宇生非锗同位素特征X射线 及 γ 射线的级联本底	控制地面	若掌握晶体 生长技术,
	本底贡献	Tritium的连续本底 (18keV以下)	晶体生长和探测器研制 时间	可在地下头 验室进行晶 体生长
	宇生锗核 本底贡献	Ge−68及其子核Ga−68的K、 L、M特征X射线及连续区域	同位素富集 (主要为减少Ge-70)	

CDEX-300v本底优化控制

□CDEX-300v本底控制方案(初步)

- ①采用6.5m的液氮屏蔽,且液氮中²²²Rn需要纯化(μBq/kg);
- ②采用液氩做反符合,液氩需要纯化或采用地下氩;

要求具备µBq/kg放射性测量能力

- ③ 探测器内铜构件需要采用地下生产电解铜($\mu Bq/kg$);
- ④探测器非铜构件材料放射性活度需要优化(~0.1mBq/kg);
- ⑤采用富集锗制作探测器,希望未来在地下生产锗晶体;

□CDEX未来实验中的关键技术

- ①大型液氮低温屏蔽系统
- ②地下超低本底电解铜
- ③低本底低噪声前端电子学
- ④超低本底高纯锗探测器
- ⑤ 宇生放射性控制方案(富集锗+屏蔽运输)

大型液氮低温屏蔽系统

采用6.5m、纯化的液氮(μBq/kg²²²Rn)屏蔽系统,可 将探测器环境本底、屏蔽体材料自身本底降低到 ~2×10⁻⁶ cts/(keV·kg·day)@2039keV;

屏蔽系统本底构成 (反符合及PSD前)

本底来源	ROI本底 (<i>cpkkd@2039keV</i>)
液氮外部γ	< 10 ⁻⁷
液氮外部中子	< 10 ⁻⁸
~液氮/液氩中 ²²² Rn (~0.1mBq/kg)	~2×10 ⁻⁴ (未纯化)
液氮/液氩中 ²²² Rn (~µBq/kg)	~2×10 ⁻⁶ (纯化)
天然氩中⁴²Ar (~90 μBq/kg)	~1×10-5
地下氩中 ⁴² Ar (<1/1400 times)	< 10 ⁻⁸

地下超低本底电解铜

- 探测器核心构件分为铜材质和非铜材,铜材质居多;
- 探测器内铜构件需要采用地下生产电解铜(μBq/kg);
- 目标: U/Th含量~ O(0.1µBq/kg);
- 千级洁净棚@CJPL-I

低本底低噪声前端电子学研究 🔗

■最靠近高纯锗晶体的材料→低本底(高纯度、低质量)

✓ 基于CMOS ASIC的低温低噪声前放研制
 ✓ 低本底电路基板:熔炉石英和硅基板
 ✓ 低本底线缆: PTFE(聚四氟乙烯)柔性电缆

ASIC前放

硅基板

31

CDEX HPGe探测技术研发

- 开展BEGe和ICPC探测器自主研制,取得成功;
- 开展高纯锗探测器裸泡测试,长期性能稳定;

CDEX HPGe探测技术研发

- •开展了长期的锗晶体生长工艺研究,取得进展;
- 未来可以地下生长锗晶体,大大压低宇生本底, 提升0vββ实验灵敏度。

CDEX 富集锗材料和探测器制备 🚭

- 开展富集锗材料购置和富集锗探测器研制;
- 首批探测器将于2021年底到达锦屏地下实验室;

锗晶体内宇生放射性研究

宇宙线:

- ✓相同海拔,通量增量在几倍的范围内;
- ✓相同纬度,通量增量往往超过两个数量级,随之而来的是宇生核素产额的急剧增加,避免探测器的高空运输;
- ✓宇宙射线粒子与各同位素反应产生放射性核素的截面不同,同位素丰度也会影响某些核素的产生率。

	Krasnoyarsk (N $56^\circ)$		Strasbourg (N 49°)		Beijing (N 40°)	
	0 m	11300 m	0 m	11300 m	0 m	11300 m
Neutron	$3.400 imes 10^{-3}$	1.969	2.982×10^{-3}	1.415	2.200×10^{-3}	8.793×10^{-1}
Proton	2.169×10^{-4}	1.453×10^{-1}	2.043×10^{-4}	1.044×10^{-1}	1.657×10^{-4}	6.457×10^{-2}
Muon	1.191×10^{-2}	8.960×10^{-2}	1.191×10^{-2}	8.420×10^{-2}	1.182×10^{-2}	7.122×10^{-2}
Gamma	1.732×10^{-2}	2.755	1.722×10^{-2}	2.534	1.682×10^{-2}	2.131

锗材料宇宙射线照射场景

	半衰期		衰变子体	产生率(北京)(day ⁻¹ kg ⁻¹)				
于生核素		 		中子	质子	μ子	伽马	总和
⁶⁸ Ge	270.9 d	EC	⁶⁸ Ga	73.30	5.41	0.31	4.03	83.05
⁶⁸ Ga	67.7 m	EC or β^+	⁶⁸ Zn	73.30	5.41	0.31	4.03	83.05
⁶⁵ Zn	243.9 d	EC or β^+	⁶⁵ Cu	35.14	3.64	1.23	0.46	40.47
⁶³ Ni	101.2 yr	β^-	⁶³ Cu	4.05	0.54	0.12	0.08	4.79
⁵⁷ Co	271.7 d	EC	⁵⁷ Fe	3.55	1.07	0.03	0.03	4.68
⁶⁰ Co	5.3 yr	β^-	⁶⁰ Ni	1.21	0.22	0.01	0.01	1.45
⁵⁵ Fe	2.7 yr	EC	⁵⁵ Mn	3.01	1.05	0.04	0.05	4.15
⁵⁴ Mn	312.2 d	EC	⁵⁴ Cr	0.67	0.24	0.01	0.02	0.94
⁴⁹ V	330.0 d	EC	⁴⁹ Ti	0.90	0.49	0.02	0.02	1.42
³ H	12.3 yr	β^-	³ He	18.33	4.82	0.33	0.20	23.68

高纯锗探测器运输专用屏蔽

□ 避免探测器的高空运输: 每一步运输都使用17吨的钢屏蔽体;

✓屏蔽体顶面厚度700mm,侧面厚度400mm;

✓针对整个运输过程模拟,预计可将宇生放射性降低至少25倍;

无中微子双β衰变探测

■ 富集⁷⁶Ge

✓ 主要本底来自于⁶⁰Co (β⁻), ⁶⁸Ga (EC or β⁺),可通过PSD甄别进一步降低;
 ✓ ⁶⁸Ge降低方法:1) 增加冷却时间 2) 减少产生率(⁷⁶Ge富集+运输屏蔽)

37

无中微子双β衰变探测

■ 富集⁷⁶Ge

✓ 主要本底来自于⁶⁰Co (β⁻), ⁶⁸Ga (EC or β⁺),可通过PSD甄别进一步降低;
 ✓ ⁶⁸Ge降低方法:1) 增加冷却时间 2) 减少产生率(⁷⁶Ge富集+运输屏蔽)
 如果未来能够在地下实验室进行晶体生长及探测器制作
 ✓ 除⁶⁸Ge、⁶⁸Ga外,其他长寿命宇生放射性核素均降低到可以忽略的水平。

未来展望-暗物质探测

- 在暗物质探测关心的低能区(< 2 keV):
 - ✓ 富集锗并不能解决其他宇生放射性核素尤其是³H的问题;
 - ✓⁶⁸Ge特征峰可通过拟合扣掉,但³H连续能谱无法扣除;
- 如果未来能够在地下实验室进行晶体生长及探测器制作
- ✓ 除⁶⁸Ge、⁶⁸Ga外,包括³H在内的其他长寿命宇生放射性核素均降低到可以忽略的水平。

地面生长晶体和探测器制作

未来展望-太阳中微子探测

- 对于低阈值高纯锗探测器来说,随着本底降低,最有可能先探测到⁸B太阳中微子;
- 当本底水平达到2×10⁻³ cpkkd@1keV,阈值达到200 eV时,将不可避免的触碰到 中微子台阶;
- 理想情况下,每吨靶物质每年可以探测到约350个太阳中微子(其中⁸B约200个);
 考虑探测器阈值100 eV,每吨靶物质每年可以探测到约280个太阳中微子事例;

总结

- Ονββ实验是中微子性质研究中的一个重要方向;
- 面向下一代半衰期>10²⁸yr和m_{ββ}<10meV的科学目标,国
 际上正在开展多种实验技术研究;
- 高纯锗探测器技术在下一代Ονββ实验中具有极强竞争力;
- CDEX合作组启动CDEX-300v实验,开展300kg量级富集锗 探测器实验系统建设;
- 目前正在针对多项关键技术正在预研,取得了一定进展;
- 未来逐步推动国际合作的吨级高纯锗0νββ实验落户锦屏。

L.T. Yang, Tsinghua U., yanglt@tsinghua.edu.cn