"无中微子双贝塔衰变核矩阵元"研讨会 2021年5月19日-5月23日,珠海

无中微子双β衰变核矩阵元的 组态相互作用投影密度泛函研究

王亚坤

合作者:孟玉、赵鹏巍

□ 引言

□ 理论框架

- 无中微子双贝塔衰变跃迁算符
- 核多体波函数

□ 结果讨论

原子核的弱衰变过程

□ 原子核 β 衰变 $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e$ ✓ 中微子的提出与发现 □ 两中微子双 β 衰变 – 2νββ $(A, Z) \to (A, Z+2) + e^- + e^- + \bar{\nu}_e + \bar{\nu}_e$ Mayer, PR 48, 512 (1935) □ Majorana 费米子理论 ✓ 粒子是其自身的反粒子 (Majorana 粒子) Majorana, NC 14, 171 (1937) □ 无中微子双 β 衰变 - 0νββ $(A, Z) \to (A, Z + 2) + e^{-} + e^{-}$ Furry, PR 56, 1184 (1939)

双 β 衰变候选核素

□ 双 β 衰变的发生条件: ✓ 对关联使得偶偶原子核具有 更大的结合能,导致 β 衰变 被禁戒

Saakyan, ARNPS. 63, 503 (2013)

□ 双 β 衰变候选核:

 能够发生双 β 衰变的候选 核素共计 38 个; 双 β 衰变 相空间因子敏感依赖于衰 变 Q 值:

 $G^{2\nu} \propto Q^{11}$, $G^{0\nu} \propto Q^5$

Nuclide	N.a. (%)	Q value (keV)
⁴⁸ Ca	0.187	4262.96 ± 0.84
⁷⁶ Ge	7.44	2039 ± 0.050
⁸² Se	8.73	2997 ± 0.3
⁹⁶ Zr	2.80	3356 ± 0.086
¹⁰⁰ Mo	9.63	3034.40 ± 0.17
¹¹⁰ Pd	11.72	2017.85 ± 0.64
¹¹⁶ Cd	7.49	2813.50 ± 0.13
¹²⁴ Sn	5.79	2292.64 ± 0.39
¹³⁰ Te	33.8	2527.518 ± 0.013
¹³⁶ Xe	8.9	2457.83 ± 0.37
¹⁵⁰ Nd	5.64	3371.38 ± 0.20

Ejiri et al., PR 797, 1 (2019)

$0\nu\beta\beta$ 衰变的研究意义

检验超出

□ 中微子特性 (Majorana or Dirac) _

轻子数不守恒

□ 中微子质量排序, 绝对中微子质量

▶ 太阳中微子实验: m₂² - m₁² = 7.5 × 10⁻⁵ eV² Ahmad et al., PRL 89, 011301 (2002)

▶ 大气中微子实验:
 |m₃² - m₂²| = 2.4 × 10⁻³ eV²
 Fukuda et al., PRL 81, 1562 (1998)

> $0\nu\beta\beta$ 实验: $\langle m_{\beta\beta} \rangle = \sum |U_{ek}|^2 m_k$ Engel & Menendez, RPP 80, 046301 (2017) m^2 u^3 u^3 u^3 u^3 u^2 u^3 u^2 u^2

$0\nu\beta\beta$ 实验研究进展

□ 目前, 人们尚未观测到 0νββ 的实验信号, 只给出其半衰期的下限.

原子核	半衰期下限(年)	实验合作组
$^{48}\mathrm{Ca}$	5.8×10^{22}	ELEGANT-IV
$^{76}\mathrm{Ge}$	1.8×10^{26}	GERDA
	1.9×10^{25}	Majorana-Demonstrator
$^{82}\mathrm{Se}$	3.6×10^{23}	NEMO-3
$^{96}\mathrm{Zr}$	9.2×10^{21}	NEMO-3
$^{100}\mathrm{Mo}$	1.1×10^{24}	NEMO-3
$^{116}\mathrm{Cd}$	1.0×10^{23}	NEMO-3
$^{130}\mathrm{Te}$	1.5×10^{25}	NEMO-3
$^{136}\mathrm{Xe}$	1.1×10^{26}	KamLAND-Zen
	1.8×10^{25}	EXO-200
$^{150}\mathrm{Nd}$	2.0×10^{22}	NEMO-3

✓ 升级后的 nEXO (¹³⁶Xe), LEGEND (⁷⁶Ge), KamLAND-Zen (¹³⁶Xe) 等实验预计将 0νββ 半衰期推至 10²⁷ 年.

实验名称	主导单位	候选核素
CDEX	清华大学	$^{76}\mathrm{Ge}$
Pandax-III	上海交通大学	$^{136}\mathrm{Xe}$
$N\nu DEx$	中科院近物所	$^{82}\mathrm{Se}$
晶体微量热实验	复旦大学	$^{100}\mathrm{Mo}$

0νββ 理论研究进展:核矩阵元

□ 0νββ 半衰期 (轻中微子质量机制):

 $[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

□ 相空间因子 G^{0ν}(Q_{ββ}, Z) 可通过运动学精确计算得到.

Kotila & Iachello, PRC 85, 034316 (2012)

□ 原子核矩阵元 M^{0ν} 依赖于跃迁算符以及原子核结构模型提供的 原子核多体波函数.

□ 中微子有效质量 $\langle m_{\beta\beta} \rangle = \sum_{k} |U_{ek}|^2 m_k$ 依赖于中微子振荡矩阵以及中 微子质量本征值.

原子核矩阵元的高精度计算是连接 0νββ 衰变实验数据与中微子有效 质量的关键因素

0νββ 理论研究进展:核矩阵元

- □ 组态相互作用壳模型 (CISM)
 Horoi et al., PRL 110, 222502 (2013)
 Iwata et al., PRL 116, 112502 (2016)
- □ 相互作用玻色子模型 (IBM) Barea et al., PRC 87, 014315 (2015)
- □ 投影 HFB 模型 (PHFB)

Rath et al., PRC 85, 014308 (2012) Rath et al., PRC 87, 014301 (2013)

□ 密度泛函理论 (DFT)

Vaquero et al., PRL 111, 142501 (2013) Song et al., PRC 90, 054309 (2014) Yao et al., PRC 91, 024316 (2015)

- 基于壳模型哈密顿的生成坐标方法 Jiao et al., PRC 96, 054301 (2017) Jiao et al., PRC 98, 064324 (2018)
- 手征有效场论+介质内相似重整化群
 +生成坐标方法

Yao et al., PRL 124, 232501 (2020)

□ 组态相互作用投影密度泛函理论(CI-PDFT) Zhao et al., PRC 94, 041301(R) (2016)

✓ 全模型空间 ✓ 集体与准粒子激发之间的混合 × 三轴形变自由度

本文工作

□ 发展三维组态相互作用投影密度泛函理论,研究原子核 0νββ 核矩阵元:

✓ 三轴形变 ⇒ 核矩阵元中的三轴形变效应

✓ 准粒子激发组态 ⇒ 核矩阵元中的准粒子组态混合效应

弱作用散射矩阵

核子流

- □ 核子流包含矢量流(V), 弱磁流(M), 轴矢量流(A), 诱发赝标流(P): $\mathcal{J}_{\mu}^{\dagger}(x) = \bar{\psi}(x) \left[g_{V}(q^{2})\gamma_{\mu} + ig_{M}(q^{2}) \frac{\sigma_{\mu\nu}}{2m_{p}} q^{\nu} - g_{A}(q^{2})\gamma_{\mu}\gamma_{5} - g_{P}(q^{2})q_{\mu}\gamma_{5} \right] \tau_{-}\psi(x)$ Simkovic et al., PRC 60, 055502 (1999) 其中, m_{p} 为核子质量, q_{μ} 为四动量转移, $\psi(x)$ 为核子场, τ_{-} 为同位旋下降 算符。
 - 自 含偶极形状因子的耦合系数: $g_V(q^2) = \frac{g_V}{(1+q^2/M_V^2)^2}$ $g_A(q^2) = \frac{g_A}{(1+q^2/M_A^2)^2}$ $g_A(q^2) = \frac{g_A}{(1+q^2/M_A^2)^2}$ $g_M(q^2) = (\mu_p - \mu_n)g_V(q^2)$ $g_P(q^2) = 2m_p \frac{g_A(q^2)}{q^2 + m_\pi^2} \left(1 - \frac{m_\pi^2}{M_A^2}\right)$ $M_V = 842 \text{ MeV}$ $M_A = 1090 \text{ MeV}$ Simkovic et al., PRC 60, 055502 (1999)
 质子中子磁矩差值

12

 $(\mu_p - \mu_n) = 3.70$

中微子传播子

□ 中微子传播子:

 $\langle 0|\hat{T}\left(\nu_{eL}(x_1)\nu_{eL}^T(x_2)\right)|0\rangle$

Majorana 中微子场:

$$\nu_{eL}(x) = \sum_{i=1}^{3} U_{ei} \ \nu_{iL}(x)$$

$$\nu_{iL}(x) = \frac{1 - \gamma_5}{2} \nu_i(x)$$
 $\nu_i = (\nu_i)^c$
Majorana 条件

□ 轻中微子极限下的 Majorana 传播子:

$$\langle 0|\hat{T}\left(\nu_{eL}(x_1)\nu_{eL}^T(x_2)\right)|0\rangle = -\sum_i |U_{ei}|^2 \frac{1-\gamma_5}{2} \langle 0|\hat{T}\left(\nu_i(x_1)\bar{\nu}_i(x_2)\right)|0\rangle \frac{1-\gamma_5}{2} C$$

 $0\nu\beta\beta$ 衰变算符

0νββ衰变率:

$$[T_{1/2}^{0\nu}]^{-1} = \frac{1}{\ln 2} \int |\langle f|iT|i\rangle|^2 \, d\Pi_2 = G^{0\nu} \, g_A^4 \, \left|\frac{\langle m_\nu\rangle}{m_e}\right|^2 \, |M^{0\nu}|^2$$

其中, G^{0v} 为相空间因子, M^{0v} 为核矩阵元.

□ 核矩阵元:

$$M^{0\nu} = \langle \Psi_F | \hat{\mathcal{O}}^{0\nu} | \Psi_I \rangle$$

0νββ 衰变算符:

$$\hat{\mathcal{O}}^{0\nu} = \frac{4\pi R}{g_A^2} \int d^3 x_1 d^3 x_2 \int \frac{d^3 q}{(2\pi)^3} h(q) e^{i\mathbf{q}\cdot(\mathbf{x}_1 - \mathbf{x}_2)} \mathcal{J}^{\dagger}_{\mu}(\mathbf{x}_1) \mathcal{J}^{\mu\dagger}(\mathbf{x}_2)$$

$$h(q) = 1/[q(q + E_d)] \xleftarrow{\text{Pitrade}} p_{\text{integral}}$$

$$\overline{\text{pitrade}}$$

$0\nu\beta\beta$ 衰变算符

Ονββ 衰变算符:

$$\hat{\mathcal{O}}^{0\nu} = \frac{4\pi R}{g_A^2} \int d^3 x_1 d^3 x_2 \int \frac{d^3 q}{(2\pi)^3} h(q) e^{i\mathbf{q}\cdot(\mathbf{x}_1 - \mathbf{x}_2)} \mathcal{J}^{\dagger}_{\mu}(\mathbf{x}_1) \mathcal{J}^{\mu\dagger}(\mathbf{x}_2)$$

核子流: $\mathcal{J}^{\dagger}_{\mu}(x) = \bar{\psi}(x) \left[g_V(\mathbf{q}^2) \gamma_{\mu} + ig_M(\mathbf{q}^2) \frac{\sigma_{\mu\nu}}{2m_p} q^{\nu} - g_A(\mathbf{q}^2) \gamma_{\mu} \gamma_5 - g_P(\mathbf{q}^2) q_{\mu} \gamma_5 \right] \tau_- \psi(x)$

□ 算符的分解:

VV:
$$g_V^2(\boldsymbol{q}^2) \left(\gamma^0 \gamma_\mu\right)^{(1)} \left(\gamma^0 \gamma^\mu\right)^{(2)}$$
,
AA: $g_A^2(\boldsymbol{q}^2) \left(\gamma^0 \gamma_\mu \gamma_5\right)^{(1)} \left(\gamma^0 \gamma^\mu \gamma_5\right)^{(2)}$,

$$\text{AP:} \qquad 2g_A(\boldsymbol{q}^2)g_P(\boldsymbol{q}^2)\left(\gamma^0\boldsymbol{\gamma}\gamma_5\right)^{(1)}\left(\gamma^0\boldsymbol{q}\gamma_5\right)^{(2)}\;,$$

$$\begin{aligned} \text{PP:} \qquad g_P^2(\boldsymbol{q}^2) \left(\gamma^0 \boldsymbol{q} \gamma_5\right)^{(1)} \left(\gamma^0 \boldsymbol{q} \gamma_5\right)^{(2)} ,\\ \text{MM:} \qquad g_M^2(\boldsymbol{q}^2) \left(\gamma^0 \frac{\sigma_{\mu i}}{2m_p} q^i\right)^{(1)} \left(\gamma^0 \frac{\sigma^{\mu j}}{2m_p} q_j\right)^{(2)} ,\end{aligned}$$

 $\square \quad 0\nu\beta\beta$ 核矩阵元: $M^{0\nu} = M^{VV} + M^{AA} + M^{AP} + M^{PP} + M^{MM}$

CI-PDFT多体波函数

□ CI-PDFT 框架下的核多体波函数:

$$|\Psi_{IM}\rangle = \sum_{K\kappa} F^{I}_{K\kappa} \hat{P}^{I}_{MK} |\Phi_{\kappa}\rangle$$

□ 三维角动量投影算符 \hat{P}^{I}_{MK} :

$$\hat{P}^{I}_{MK} = \frac{2I+1}{8\pi^2} \int d\Omega D^{I*}_{MK}(\Omega) \hat{R}(\Omega)$$

□ 内禀波函数 $|\Phi_{\kappa}\rangle \in \{|\Phi_{0}\rangle, \hat{\beta}_{\nu_{i}}^{\dagger}\hat{\beta}_{\nu_{j}}^{\dagger}|\Phi_{0}\rangle, \hat{\beta}_{\pi_{i}}^{\dagger}\hat{\beta}_{\pi_{j}}^{\dagger}|\Phi_{0}\rangle\}$ $|\Phi_{0}\rangle = \prod_{k>0} \hat{\beta}_{k}|0\rangle, \quad \begin{pmatrix} h_{D}-\lambda & \Delta\\ -\Delta^{*} & -h_{D}^{*}+\lambda \end{pmatrix} = E_{k}\begin{pmatrix} U_{k}\\ V_{k} \end{pmatrix}$

□ 变分参数 *F^I_{Kκ}* 求解:

$$\sum_{K'\kappa'} \{ \langle \Phi_{\kappa} | \hat{H} \hat{P}^{I}_{KK'} | \Phi_{\kappa'} \rangle - E^{I} \langle \Phi_{\kappa} | \hat{P}^{I}_{KK'} | \Phi_{\kappa'} \rangle \} F^{I}_{K'\kappa'} = 0$$

 \hat{H} 通过密度泛函对密度矩阵 $\hat{\rho}_{ji}$ 的二阶偏导求得,无任何可调参数

位能曲面

□ ⁷⁶Ge 和⁷⁶Se 位能曲面:

✓ ⁷⁶Ge:
$$\gamma = 22^{\circ}$$
; ⁷⁶Se: $\gamma = 26^{\circ}$

能谱和跃迁

✓ 理论计算结果较好地再现原子核 ⁷⁶Ge 和 ⁷⁶Se 晕态和 γ 带的谱学性质
 ✓ 完整考虑了矢量、同位旋矢量、梯度项和高阶项中奇时间场分量的贡献

核矩阵元:三轴形变效应

- ✓ 轴矢耦合道贡献的核矩阵元值约占总核矩阵元值的 85%, 赝标和弱磁 耦合项的贡献约为10%
- ✓ 考虑三轴形变自由度, 核矩阵元值从 2.8 增加到 3.9, 增幅约 39%

核矩阵元: 准粒子组态混合效应

总结

发展了三维组态相互作用投影密度泛函理论,以双贝塔衰变候选核⁷⁶Ge为例,计算了其谱学性质和核矩阵元值,分析了原子核三轴形变和准粒子组态混合对核矩阵元的影响,研究发现:
 考虑三轴形变自由度,⁷⁶Ge的核矩阵元值增加,增幅为 39%
 / 准粒子激发组态混合会降低核矩阵元值,减低的幅度为 8.9%

展望

□多体波函数:三轴形状涨落、同位旋标量对关联...

□跃迁算符:两体流、轴矢耦合常数 g_A压低、contact 相互作用...