Effective field theory approach to lepton number violating processes

Hao-Lín Wang (Nankaí Uníversíty)

Sun Yat-sen University, Zhuhai, May. 20, 2021

Based on the works with Yi Liao, Xiao-Dong Ma

JHEP 03 (2020) 120 JHEP 01 (2020) 127 Arxiv: 2102.03491 [accepted by CPC]

Why we explore lepton number violation (LNV)?

- Neutrino oscillation ⇒ non-vanishing neutrino mass ⇐ Majorana neutrino mass
- The nature of dark matter
- The asymmetry of matter and anti-matter
- ..
- LNV processes are definite signal for **New physics (NP)**
- lepton number violation (LNV) \rightarrow BAU via leptogenesis

The ways to lepton number violation (LNV)

• Experimental

- High-energy frontier: The production of the same sign charged leptons
- **High-intensity frontier:** Search for the LNV signals in low energy experiments
- Theoretical
 - Top-down approach: Study signals in explicit NP models
 - **Bottom-up approach:** Work with Effective field theories (EFTs)

Both approaches are necessary and complementary!

Low energy LNV processes

Nuclear processes

- Neutrinoless double beta decay $X \to X' e^{\pm} e^{\pm}$
 - KamLAND-Zen, Gerda, EXO-200, SNO+, Majorana...
 - $T_{1/2}^{0\nu}(^{136}Xe) > 1.06 \times 10^{26}$ yr from KamLAND-Zen
- Muon to positron or anti-muon $\mu^- X \rightarrow$

 $e^+(\mu^+)X'$ in the upcoming Mu2e experiment

Modes for $l_{\alpha}l_{\beta}$ =	ee	eμ	$\mu\mu$
$K^- ightarrow \pi^+ l^lpha \dot{l}^eta$	2.2×10^{-10}	$5.0 imes 10^{-10}$	4.2×10^{-11}
$D^- o \pi^+ l^lpha l^eta$	1.1×10^{-6}	2.0×10^{-6}	2.2×10^{-8}
$D^- ightarrow K^+ l^{lpha} l^{eta}$	9×10^{-7}	$1.9 imes 10^{-6}$	1.0×10^{-5}
$B^- o \pi^+ l^lpha l^eta$	$2.3 imes 10^{-8}$	$1.5 imes 10^{-7}$	$4.0 imes 10^{-9}$
$B^- ightarrow K^+ l^{lpha} \dot{l}^{eta}$	3.0×10^{-8}	$1.6 imes 10^{-7}$	4.1×10^{-8}

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Modes for } l = & e & \mu \\ \hline \tau^- \to \pi^- \pi^- l^+ & 2.0 \times 10^{-8} & 3.9 \times 10^{-8} \\ \hline \tau^- \to \pi^- K^- l^+ & 3.2 \times 10^{-8} & 4.8 \times 10^{-8} \\ \hline \tau^- \to K^- K^- l^+ & 3.3 \times 10^{-8} & 4.7 \times 10^{-8} \\ \hline \end{array}$

- Rare mesons & lepton decays
 - LNV K, B, D decays
 - Babar, Belle, LHCb
 - LNV Tau decays
 - Belle

A general picture of EFT approach for LNV processes

Take $K^- \rightarrow \pi^+ l^-_{\alpha} l^-_{\beta}$ as an example...

(a) <u>Mass mechanísm</u>

(b) Long-distance interaction

(c) Short-distance interaction

Start from LEFT

A general picture of EFT approach for LNV processes

Start from LEFT

• LEFT = all possible local, $SU(3)_C \times U(1)_{EM}$ invariant operators constructed from the relevant fields ordered by the inverse power of Λ_{EW}

$$\mathcal{S}_{\text{LEFT}} = \mathcal{S}_{\text{dim} \le 4} + \sum_{\text{dim} 5, i} \frac{\hat{C}_{5, i}}{\Lambda} \mathcal{Q}_{\text{dim} - 5}^{i} + \sum_{\text{dim} 6, i} \frac{\hat{C}_{6, i}}{\Lambda^2} \mathcal{Q}_{\text{dim} - 6}^{i} + \sum_{\text{dim} 7, i} \frac{\hat{C}_{7, i}}{\Lambda^3} \mathcal{Q}_{\text{dim} - 7}^{i} + \sum_{\text{dim} 8, i} \frac{\hat{C}_{8, i}}{\Lambda^4} \mathcal{Q}_{\text{dim} - 8}^{i} + \sum_{\text{dim} 9, i} \frac{\hat{C}_{9, i}}{\Lambda^5} \mathcal{Q}_{\text{dim} - 9}^{i} + \cdots$$

$$Liao, XDMA, Wang, 2020 \quad Murphy, 2020 \quad Liao, XDMA, Wang, 2019$$

Operators in LEFT

Relevant dim-9 operator basis

Operator	Specific form	Operator	Specific form
<pre></pre>	$(\overline{u_L^{p}}\gamma^{\mu} d_L^{r})[\overline{u_L^{s}}\gamma_{\mu} d_L^{t}](j^{lpha eta}/j_5^{lpha eta})$	$\mathscr{O}_{prst}^{RRRR, S/P}$	$(\overline{u_R^{\rho}}\gamma^{\mu}d_R^r)[\overline{u_R^s}\gamma_{\mu}d_R^t](j^{lphaeta}/j_5^{lphaeta})$
$\mathscr{O}_{prst}^{LLLL, T}$	$(\overline{u_L^{p}}\gamma^{\mu}d_L^{r})[\overline{u_L^{s}}\gamma^{\nu}d_L^{t}](j_{\mu\nu}^{\alpha\beta})$	$\mathscr{O}_{prst}^{RRRR, T}$	$(\overline{u_R^p}\gamma^\mu d_R^r)[\overline{u_R^s}\gamma^\nu d_R^t](j^{lphaeta}_{\mu u})$
$\tilde{\mathscr{O}}_{prst}^{LLLL, T}$	$(\overline{u_L^p}\gamma^{\mu}d_L^r)[\overline{u_L^s}\gamma^{\nu}d_L^t)(j_{\mu\nu}^{\alpha\beta})$	$\widetilde{\mathscr{O}}_{prst}^{RRRR, T}$	$(\overline{u_R^p}\gamma^{\mu}d_R^r)[\overline{u_R^s}\gamma^{\nu}d_R^t)(j_{\mu\nu}^{lphaeta})$
$\mathscr{O}_{prst}^{LRLR, S/P}$	$(\overline{u_L^p}d_R^r)[\overline{u_L^s}d_R^t](j^{lphaeta}/j_5^{lphaeta})$	$\mathscr{O}_{prst}^{RLRL, S/P}$	$(\overline{u_R^{p}}d_L^r)[\overline{u_R^s}d_L^t](j^{lphaeta}/j_5^{lphaeta})$
$\widetilde{\mathscr{O}}_{\textit{prst}}^{\textit{LRLR, S/P}}$	$(\overline{u_L^p}d_R^r][\overline{u_L^s}d_R^t)(j^{lphaeta}/j_5^{lphaeta})$	$\widetilde{\mathscr{O}}_{prst}^{RLRL, S/P}$	$(\overline{u_R^p}d_L^r][\overline{u_R^s}d_L^t)(j^{lphaeta}/j_5^{lphaeta})$
$\mathscr{O}_{prst}^{LRLR, T}$	$(\overline{u_L^p}i\sigma^{\mu\nu}d_R^r)[\overline{u_L^s}d_R^t](j^{lphaeta}_{\mu u})$	$\mathscr{O}_{prst}^{RLRL, T}$	$(\overline{u_R^{p}}i\sigma^{\mu\nu}d_L^r)[\overline{u_R^s}d_L^t](j_{\mu\nu}^{lphaeta})$
$\widetilde{\mathscr{O}}_{prst}^{LRLR, T}$	$(\overline{u_L^{\rho}}\sigma^{\mu\rho} d_R^r)[\overline{u_L^s}\sigma_{\rho}^v d_R^t](j_{\mu\nu}^{\alpha\beta})$	$\widetilde{\mathscr{O}}_{prst}^{RLRL, T}$	$(\overline{u_R^{\rho}}\sigma^{\mu\rho}d_L^r)[\overline{u_R^s}\sigma^{\nu}_{\rho}d_L^t](j^{\alpha\beta}_{\mu\nu})$
<pre></pre>	$(\overline{u_L^p}d_R^r)[\overline{u_L^s}\gamma^{\mu}d_L^t](j_{\mu}^{\alpha\beta}/j_{5,\ \mu}^{\alpha\beta})$	<pre></pre>	$(\overline{u_R^{p}}d_L^r)[\overline{u_R^s}\gamma^{\mu}d_R^t](j_{\mu}^{lphaeta}/j_{5,\ \mu}^{lphaeta})$
$\tilde{\mathscr{O}}_{prst}^{LRLL, V/A}$	$(\overline{u_L^{p}}d_R^{r}][\overline{u_L^{s}}\gamma^{\mu}d_L^{t})(j_{\mu}^{lphaeta}/j_{5,\ \mu}^{lphaeta})$	<i>õ</i> ^{RLRR,} V∕A prst	$(\overline{u_R^p}d_L^r][\overline{u_R^s}\gamma^\mu d_R^t)(j_\mu^{lphaeta}/j_{5,\ \mu}^{lphaeta})$
$\mathscr{O}_{prst}^{LRRR, V/A}$	$(\overline{u_L^p} d_R^r) [\overline{u_R^s} \gamma^\mu d_R^t] (j_\mu^{\alpha\beta} / j_{5, \mu}^{\alpha\beta})$	$\mathscr{O}_{prst}^{RLLL, V/A}$	$(\overline{u_R^{p}}d_L^r)[\overline{u_L^s}\gamma^{\mu}d_L^t](j_{\mu}^{lphaeta}/j_{5,\ \mu}^{lphaeta})$
$\tilde{\mathscr{O}}_{prst}^{LRRR, V/A}$	$(\overline{u_L^p} d_R^r) [\overline{u_R^s} \gamma^\mu d_R^t) (j_\mu / j_{5, \mu}^{\alpha\beta})$	$\tilde{\mathscr{O}}_{prst}^{RLLL, V/A}$	$(\overline{u_R^p}d_L^r)[\overline{u_L^s}\gamma^\mu d_L^t)(j_\mu/j_{5,\mu}^{\alpha\beta})$
$\mathscr{O}_{prst}^{LRRL, T}$	$(\overline{u_L^p} i \sigma^{\mu\nu} d_R^r) [\overline{u_R^s} d_L^t] (j_{\mu\nu}^{\alpha\beta})$	$\mathscr{O}_{prst}^{RLLR, T}$	$(\overline{u_R^{\rho}}_i \sigma^{\mu\nu} d_L^r) [\overline{u_L^s} d_R^t] (j_{\mu\nu}^{\alpha\beta})$
$\tilde{\mathscr{O}}_{prst}^{LRRL, T}$	$(\overline{u_L^p} i \sigma^{\mu\nu} d_R^r] [\overline{u_R^s} d_L^t) (j_{\mu\nu}^{\alpha\beta})$	$\tilde{\mathscr{O}}_{prst}^{RLLR, T}$	$(\overline{u_R^{\rho}}i\sigma^{\mu\nu}d_L^r][\overline{u_L^s}d_R^t)(j_{\mu\nu}^{\alpha\beta})$
<pre></pre>	$(\overline{u_L^p}d_R^r)[\overline{u_R^s}d_L^t](j^{lphaeta}/j_5^{lphaeta})$	$\widetilde{\mathscr{O}}_{prst}^{LRRL, S/P}$	$(\overline{u_L^{\rho}}d_R^r][\overline{u_R^s}d_L^t)(j^{lphaeta}/j_5^{lphaeta})$

•
$$j^{\alpha\beta} = (\overline{l_{\alpha}} l^{C}_{\beta}), \ j^{\alpha\beta}_{5} = (\overline{l_{\alpha}} \gamma_{5} l^{C}_{\beta}), \ j^{\alpha\beta}_{5,\ \mu} = (\overline{l_{\alpha}} \gamma_{\mu} \gamma_{5} l^{C}_{\beta})$$
(symmetric)
• $j^{\alpha\beta}_{\mu} = (\overline{l_{\alpha}} \gamma_{\mu} l^{C}_{\beta}), \ j^{\alpha\beta}_{\mu\nu} = (\overline{l_{\alpha}} \sigma_{\mu\nu} l^{C}_{\beta})$ p (anti-symmetric)

Operators in LEFT

• The leading order contributions to LD are from dim-6 operators in LEFT [Manohar et al 17, 18]

$$\mathcal{O}_{pr\alpha\beta}^{RL,S} = (\overline{u_R^p} d_L^r) (\overline{l_{L\alpha}} \nu_\beta^C),$$

$$\mathcal{O}_{pr\alpha\beta}^{LL,V} = (\overline{u_L^p} \gamma_\mu d_L^r) (\overline{l_{R\alpha}} \gamma^\mu \nu_\beta^C),$$

$$\mathcal{O}_{pr\alpha\beta}^{LR,T} = (\overline{u_L^p} \sigma_{\mu\nu} d_R^r) (\overline{l_{L\alpha}} \sigma^{\mu\nu} \nu_\beta^C).$$

$$\mathcal{O}_{pr\alpha\beta}^{LR,S} = (\overline{u_L^p} d_R^r) (\overline{l_{L\alpha}} \nu_\beta^C),$$
$$\mathcal{O}_{pr\alpha\beta}^{RR,V} = (\overline{u_R^p} \gamma_\mu d_R^r) (\overline{l_{R\alpha}} \gamma^\mu \nu_\beta^C)$$

• Including also the contributions of dim-7 operators

$$\begin{split} \mathcal{O}_{pr\alpha\beta}^{LL,VD} &= (\overline{u_L^p} \gamma_\mu d_L^r) (\overline{l_{L\alpha}} i\overleftrightarrow{D}^\mu \nu_\beta^C), \qquad \mathcal{O}_{pr\alpha\beta}^{RR,VD} = (\overline{u_R^p} \gamma_\mu d_R^r) (\overline{l_{L\alpha}} i\overleftrightarrow{D}^\mu \nu_\beta^C), \\ \mathcal{O}_{pr\alpha\beta}^{LR,TD} &= (\overline{u_L^p} \sigma_{\mu\nu} d_R^r) (\overline{l_{R\alpha}} \gamma^{[\mu} \overleftrightarrow{D}^{\nu]} \nu_\beta^C), \qquad \mathcal{O}_{pr\alpha\beta}^{RL,TD} = (\overline{u_R^p} \sigma_{\mu\nu} d_L^r) (\overline{l_{R\alpha}} \gamma^{[\mu} \overleftrightarrow{D}^{\nu]} \nu_\beta^C), \end{split}$$

where $\bar{A}\widetilde{D}^{\mu}B = \bar{A}(D^{\mu}B) - \bar{A}(\overleftarrow{D^{\mu}}B)$ and $\gamma^{[\mu}D^{\nu]} = \gamma^{\mu}D^{\nu} - \gamma^{\nu}D^{\mu}$

1-loop QCD RGEs in LEFT

- LEFT $SU(3)_{C} \times U(1)_{EM}$
- Motivation: tame the large logs from perturbative expansion
- The field strength renormalization & the operation renormalization (operator mixing effect)
- The dominant contributions are from the 1-loop QCD renormalization
- The renormalization group equations: $16\pi^2 \mu \frac{dC_d}{d\mu} = \hat{\gamma} C_d$, $\hat{\gamma}$ as the anomalous dimension matrix
- We calculated the RG equations of Wilson coefficients with dim-reg and \overline{MS} renormalization scheme under the R_{ξ} gauge
- ξ independent as a check for the calculation

A general picture of EFT approach for LNV processes

Chiral perturbation theory

Pseudo-Nambu-Goldstone (PNG) boson

$$\int \xi = \sqrt{\Sigma} = \exp\left[i\pi^a \lambda^a/2F_0\right]$$

- Chiral symmetry: $G = SU(3)_L \times SU(3)_R$
 - ✓ Spontaneously breaking (vaccum):

quark condensates $\langle 0|\bar{q}q|0\rangle$ induces $SU(3)_L \times SU(3)_R \longrightarrow SU(3)_V$

Explicitly breaking (Lagrangian): quark masses

Spurion analysis

These symmetry structures must be captured by $\chi PT!$

$$\begin{split} q_{L,a} &\to L^p_a q_{L,p}, \quad \overline{q_R}^b \to \overline{q_R}^p \left(R^\dagger \right)^b_p, \quad q_{R,a} \to R^p_a q_{R,p}, \quad \overline{q_L}^b \to \overline{q_L}^p \left(L^\dagger \right)^b_p \\ & \xi \to L \xi U^\dagger = U \xi R^\dagger \end{split}$$

• Mesonic χ PT = all possible, G invariant operators constructed by $\Sigma(\xi)$, derivative ∂_{μ} and spurion field \mathcal{M} , and ordered by number of derivatives $\mathcal{O}(p^n)$, e.g., at the lowest order,

$$\mathcal{L}_{p^2} = \frac{F_0^2}{4} \operatorname{Tr}(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}) + \frac{F_0^2}{4} (2B_0) \operatorname{Tr}(M^{\dagger} \Sigma^{\dagger} + \Sigma M)$$

- The operators come with unknown constants (LECs)
- Chiral logarithms to estimate the NLO corrections

The external sources method (for dim-6 and -7 operators in LEFT)

• The QCD Lagrangian with external sources

 $\mathcal{L} = \mathcal{L}_{QCD} + \overline{q_L} I_{\mu} \gamma^{\mu} q_L + \overline{q_R} r_{\mu} \gamma^{\mu} q_R + (\overline{q_R} (s + ip) q_L + \overline{q_L} (t_l^{\mu\nu} \sigma_{\mu\nu}) q_R + h.c.),$

where l_{μ} , r_{μ} , s, p, $t_{l}^{\mu\nu}$, $t_{r}^{\mu\nu} = t_{l}^{\mu\nu\dagger}$ are external sources, and $\chi = 2B(s - ip)$

• Identify the external sources to $K^- \rightarrow \pi^+$ transition,

$$\begin{aligned} (I^{\mu})_{ui} &= -2\sqrt{2}G_{F}V_{ui}(\overline{\ell_{\alpha}}\gamma^{\mu}P_{L}\nu_{\alpha}) + C_{ui\alpha\beta}^{LL,V}(\overline{\ell_{\alpha}}\gamma^{\mu}P_{R}\nu_{\beta}^{c}) + C_{ui\alpha\beta}^{LL,VD}(\overline{\ell_{\alpha}}i\overleftrightarrow{D}^{\mu}P_{R}\nu_{\beta}^{c}), \\ (I^{\mu})_{ui} &= C_{ui\alpha\beta}^{RR,V}(\overline{\ell_{\alpha}}\gamma^{\mu}P_{R}\nu_{\beta}^{c}) + C_{ui\alpha\beta}^{RR,VD}(\overline{\ell_{\alpha}}i\overleftrightarrow{D}^{\mu}P_{R}\nu_{\beta}^{c}), \\ (\chi^{\dagger})_{ui} &= 2BC_{ui\alpha\beta}^{RL,S}(\overline{\ell_{\alpha}}P_{R}\nu_{\beta}^{c}) , \ (\chi)_{ui} = 2BC_{ui\alpha\beta}^{LR,S}(\overline{\ell_{\alpha}}P_{R}\nu_{\beta}^{c}), \\ (t_{l}^{\mu\nu})_{ui} &= C_{ui\alpha\beta}^{LR,T}(\overline{\ell_{\alpha}}\sigma^{\mu\nu}P_{R}\nu_{\beta}^{c}) + C_{ui\alpha\beta}^{LR,TD}(\overline{\ell_{\alpha}}\gamma^{[\mu}\overleftrightarrow{D}^{\nu]}P_{R}\nu_{\beta}^{c}) , \ (t_{r}^{\mu\nu})_{ui} = C_{ui\alpha\beta}^{RL,TD}(\overline{\ell_{\alpha}}\gamma^{[\mu}\overleftrightarrow{D}^{\nu]}P_{R}\nu_{\beta}^{c}), \end{aligned}$$

• To linear term of external sources and LO in χ PT, i.e., $\mathcal{O}(p^2)$ chiral Lagrangian

$$\mathscr{L}_{\chi \mathrm{PT}}^{(2)} = \frac{F_0^2}{4} \mathrm{Tr} \left(D_{\mu} \Sigma (D^{\mu} \Sigma)^{\dagger} \right) + \frac{F_0^2}{4} \mathrm{Tr} \left(\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger} \right),$$

where $D_{\mu}\Sigma = \partial_{\mu}\Sigma - il_{\mu}\Sigma + i\Sigma r_{\mu}$.

The method of spurion analysis (for dim-9 operators in LEFT)

• Take the quark level operator (irrep. under G) as

$$\mathcal{O} = \mathcal{T}_{cd}^{ab} (\overline{q_{X_1}^{c}} \Gamma_1 q_{Y_1,a}) (\overline{q_{X_2}^{d}} \Gamma_2 q_{Y_2,b}),$$

Require \mathcal{O} to be invariant under $G \Longrightarrow$ treat T_{cd}^{ab} as a spurion field with a proper transformation law under G

- Construct the corresponding hadronic operators by T_{cd}^{ab} together with the NGB matrix ξ ,..., and require the resulting operators to be invariant under G
- For each independent operator, accompany an unknow LEC

The above procedures can be finished by the following simple replacement

• The LO matching

$$q_{L,a} \to \xi_a{}^\alpha, \ \overline{q_L}{}^a \to \xi_{\alpha}^{\dagger a}, \ q_{R,a} \to \xi_a^{\dagger \alpha}, \ \overline{q_R}{}^a \to \xi_{\alpha}{}^a,$$

• NLO or NNLO matching

$$q_{L,a} \to ((D_{\mu}\xi^{\dagger})^{\dagger})_{a}^{\alpha}, \ \overline{q_{L}}^{a} \to (D_{\mu}\xi^{\dagger})_{\alpha}^{a}, \ q_{R,a} \to (D_{\mu}\xi)_{a}^{\dagger\alpha}, \ \overline{q_{R}}^{a} \to (D_{\mu}\xi)_{\alpha}^{a},$$
$$q_{L,a} \to (M^{\dagger}\xi^{\dagger})_{a}^{\alpha}, \ \overline{q_{L}}^{a} \to (\xi M)_{\alpha}^{a}, \ q_{R,a} \to (M\xi)_{a}^{\alpha}, \ \overline{q_{R}}^{a} \to (\xi^{\dagger}M^{\dagger})_{\alpha}^{a},$$

 $\xi = \sqrt{\Sigma} = \exp\left[i\pi^a \lambda^a / 2F_0\right]$

The method of spurion analysis (for dim-9 operators in LEFT)

Notation	Quark operator	chiral irrep	Hadronic operator
$\mathcal{O}_{udus}^{LLLL,S/P}$	$(\overline{u_L}\gamma^{\mu}d_L)[\overline{u_L}\gamma_{\mu}s_L](j/j_5)$	$27_L \times 1_R$	$\frac{5}{12}g_{27 imes 1}F_0^4(\Sigma i\partial_\mu \Sigma^\dagger)_2^{-1}(\Sigma i\partial^\mu \Sigma^\dagger)_3^{-1}$
$\mathcal{O}_{udus}^{LRLR,S/P}$	$(\overline{u_L}d_R)[\overline{u_L}s_R](j/j_5)$	$\overline{6}_L \times 6_R$	$-g^{a}_{\overline{6} imes 6}rac{F_{0}^{4}}{4}(\Sigma^{\dagger})^{-1}_{2}(\Sigma^{\dagger})^{-1}_{3}$
$ ilde{\mathcal{O}}_{udus}^{LRLR,S/P}$	$(\overline{u_L}d_R][\overline{u_L}s_R)(j/j_5)$	$\overline{6}_L \times 6_R$	$-g^b_{\overline{6} imes 6}rac{F^4_0}{4}(\Sigma^\dagger)^{-1}_2(\Sigma^\dagger)^{-1}_3$
$\mathcal{O}_{udus}^{LRLL,A}$	$(\overline{u_L}d_R)[\overline{u_L}\gamma^\mu s_L]j_{\mu 5}$	$\overline{15}_L imes 3_R$	$-g^{a}_{\overline{15} imes3}rac{F_{0}^{4}}{4}(\Sigma i\partial_{\mu}\Sigma^{\dagger})_{3}^{-1}(\Sigma^{\dagger})_{2}^{-1}$
$\tilde{\mathcal{O}}_{udus}^{LRLL,A}$	$(\overline{u_L}d_R][\overline{u_L}\gamma^\mu s_L)j_{\mu 5}$	$\overline{15}_L imes 3_R$	$-g^{b}_{\overline{15} imes3}rac{F_{0}^{4}}{4}(\Sigma i\partial_{\mu}\Sigma^{\dagger})^{-1}_{3}(\Sigma^{\dagger})^{-1}_{2}$
$\mathcal{O}_{usud}^{LRLL,A}$	$(\overline{u_L}s_R)[\overline{u_L}\gamma^{\mu}d_L]j_{\mu 5}$	$\overline{15}_L imes 3_R$	$-g^{\mathrm{C}}_{\overline{15} imes3}rac{F_0^4}{4}(\Sigma i\partial_\mu\Sigma^\dagger)_2{}^1(\Sigma^\dagger)_3{}^1$
$\tilde{\mathcal{O}}_{usud}^{LRLL,A}$	$(\overline{u_L}s_R][\overline{u_L}\gamma^\mu d_L)j_{\mu 5}$	$\overline{15}_L imes 3_R$	$-g_{\overline{15} imes3}^{d}rac{F_{0}^{4}}{4}(\Sigma i\partial_{\mu}\Sigma^{\dagger})_{2}^{-1}(\Sigma^{\dagger})_{3}^{-1}$
$\mathcal{O}_{udus}^{LRRL,S/P}$	$(\overline{u_L}d_R)[\overline{u_R}s_L](j/j_5)$	$8_L \times 8_R$	$g_{8\times8}^{a} \frac{F_{0}^{4}}{4} (\Sigma^{\dagger})_{2}^{-1} (\Sigma)_{3}^{-1}$
$\tilde{\mathcal{O}}_{udus}^{LRRL,S/P}$	$(\overline{u_L}d_R][\overline{u_R}s_L)(j/j_5)$	$8_L \times 8_R$	$g^b_{8 imes 8} rac{F_0^4}{4} (\Sigma^\dagger)_2^{-1} (\Sigma)_3^{-1}$
•••	• • •		• • •

• g_i s which can be determined from matrix elements of $\pi^- \to \pi^+$, $K^+ \to \pi^+ \pi^0$ and $K^0 \leftrightarrow \overline{K}^0$ by chiral symmetry and LQCD [1805.02634, 1806.02780]:

$$g_{27\times 1} = 0.38 \pm 0.08, \ g^a_{8\times 8} = 5.5 \pm 2 \text{ GeV}^2, \ g^b_{8\times 8} = 1.55 \pm 0.65 \text{ GeV}^2.$$

Matching to SMEFT from LEFT

- Assuming that there are no new particles with a mass of order Λ_{EW} or below
- It will simplifies the structures of LEFT

Matching to SMEFT from LEFT

• The dim-5 Weinberg operator and the relevant basis of dim-7 operators in SMEFT

 $\mathscr{O}_5 = \varepsilon_{ij} \varepsilon_{mn} (\overline{L^{C,i}} L^m) H^j H^n$, [Phys. Rev. Lett. 43 (1979) 1566] [JHEP 11 (2016) 043]

$\psi^2 H^4$	$\mathscr{O}_{LH} = \varepsilon_{ij}\varepsilon_{mn}(\overline{L^{C,i}}L^m)H^jH^n(H^{\dagger}H)$		$\mathscr{O}_{\overline{e}LLLH} = \varepsilon_{ij}\varepsilon_{mn}(\overline{e}L^i)(\overline{L^{C,j}}L^m)H^n$
$\psi^2 H^3 D$	$\mathscr{O}_{LeHD} = \varepsilon_{ij}\varepsilon_{mn}(\overline{L^{C,i}}\gamma_{\mu}e)H^{j}(H^{m}iD^{\mu}H^{n})$	1	$\mathscr{O}_{\overline{d}QLLH1} = \varepsilon_{ij}\varepsilon_{mn}(\overline{d}Q^i)(\overline{L^{C,j}}L^m)H^n$
$w^2 H^2 X$	$\mathscr{O}_{LHB} = g_1 \varepsilon_{ij} \varepsilon_{mn} (\overline{L^{C,i}} \sigma_{\mu\nu} L^m) H^j H^n B^{\mu\nu}$	$\psi^{+}H$	$\mathscr{O}_{\overline{d}QLLH2} = \varepsilon_{ij}\varepsilon_{mn}(\overline{d}\sigma_{\mu\nu}Q^i)(\overline{L^{C,j}}\sigma^{\mu\nu}L^m)H^n$
ψΠΛ	$\mathscr{O}_{LHW} = g_2 \varepsilon_{ij} (\varepsilon \tau^I)_{mn} (\overline{L^{C,i}} \sigma_{\mu\nu} L^m) H^j H^n W^{I\mu\nu}$		$\mathscr{O}_{\overline{d}uLeH} = \varepsilon_{ij}(\overline{d}\gamma_{\mu}u)(\overline{L^{C,i}\gamma^{\mu}}e)H^{j}$
$w^2 H^2 D^2$	$\mathscr{O}_{LDH1} = \varepsilon_{ij} \varepsilon_{mn} (\overline{L^{C,i}} \overleftarrow{D}_{\mu} L^j) (H^m D^{\mu} H^n)$		$\mathscr{O}_{\overline{Q}uLLH} = \varepsilon_{ij}(\overline{Q}u)(\overline{L^{C}}L^{i})H^{j}$
ψΠυ	$\mathscr{O}_{LDH2} = \varepsilon_{im} \varepsilon_{jn} (\overline{L^{C,i}} L^j) (D_{\mu} H^m D^{\mu} H^n)$	$\psi^4 D$	$\mathscr{O}_{\overline{d}uLDL} = \varepsilon_{ij}(\overline{d}\gamma_{\mu}u)(\overline{L^{C,i}iD^{\mu}L^{j}})$

• Mathcing at the EW scale

Dim	Operators	Matching at the electroweak scale Λ_{EW}
MM: dim-3	$\mathscr{L}_{\mathrm{M}} = -\frac{1}{2}m_{\alpha\beta}\overline{\mathbf{v}_{\alpha}^{C}}\mathbf{v}_{\beta}$	$m_{\alpha\beta} = -v^2 C_{LH5}^{\alpha\beta*} - \frac{1}{2} v^4 C_{LH}^{\alpha\beta*}$
	$\mathscr{O}_{pr\alpha\beta}^{RL,S} = (\overline{u_R^p} d_L^r) (\overline{l_{L\alpha}} v_\beta^C)$	$C_{pr\alpha\beta}^{RL,S} = \frac{v}{\sqrt{2}} V_{wr} C_{\bar{Q}uLLH}^{wp\alpha\beta*}$
LD: dim 6	$\mathscr{O}_{pr\alpha\beta}^{LR,S} = (\overline{u_L^p} d_R^r) (\overline{l_{L\alpha}} v_\beta^C)$	$C_{pr\alpha\beta}^{LR,S} = \frac{v}{\sqrt{2}} C_{dQLLH1}^{rp\alpha\beta*}$
LD. unit 0	$\mathscr{O}_{pr\alpha\beta}^{LL,\dot{V}} = (\overline{u_L^p} \gamma_\mu d_L^r) (\overline{l_{R\alpha}} \gamma^\mu v_\beta^C)$	$C_{pr\alpha\beta}^{LL,\dot{V}} = \frac{v}{\sqrt{2}} V_{pr} C_{LeHD}^{\beta\alpha*}$
	$\mathscr{O}_{pr\alpha\beta}^{RR,V} = (\overline{u_R^p} \gamma_\mu d_R^r) (\overline{l_{R\alpha}} \gamma^\mu v_\beta^C)$	$C_{pr\alpha\beta}^{RR,V} = \frac{v}{\sqrt{2}} C_{duLeH}^{rp\beta\alpha*}$
	$\mathscr{O}_{pr\alpha\beta}^{LR,T} = (\overline{u_L^p} \sigma_{\mu\nu} d_R^r) (\overline{l_{L\alpha}} \sigma^{\mu\nu} v_\beta^C)$	$C_{pr\alpha\beta}^{LR,T} = \frac{v}{\sqrt{2}} C_{dQLLH2}^{rp\alpha\beta*}$
LD: dim 7	$\mathscr{O}_{pr\alpha\beta}^{LL,VD} = (\overline{u_L^p} \gamma_\mu d_L^r) (\overline{l_{L\alpha}} i \overleftrightarrow{D}^\mu v_\beta^C)$	$C_{pr\alpha\beta}^{LL,VD} = -V_{pr} \left(4C_{LHW}^{\beta\alpha\ast} + 2C_{LDH1}^{\alpha\beta\ast} \right)$
	$\mathscr{O}_{pr\alpha\beta}^{RR,VD} = (\overline{u_R^p}\gamma_\mu d_R^r)(\overline{l_{L\alpha}}i\overleftarrow{D}^\mu v_\beta^C)$	$C_{pr\alpha\beta}^{RR,VD} = 2C_{\bar{d}uLDL}^{rp\alpha\beta*}$
	$\mathscr{O}_{prst,\alpha\beta}^{LLLL,S/P} = (\overline{u_L^p} \gamma^{\mu} d_L^r) [\overline{u_L^s} \gamma_{\mu} d_L^t] j_{(5)}^{\alpha\beta}$	$C_{prst,\alpha\beta}^{LLLL,S/P} = -2\sqrt{2}G_F V_{pr}V_{st} \left(C_{LHW}^{\{\alpha\beta\}*} + C_{LDH1}^{\alpha\beta*} + \frac{1}{2}C_{LDH2}^{\alpha\beta*}\right)$
SD: dim 9	$\mathscr{O}_{prst,\alpha\beta}^{LRRL,S/P} = (\overline{u_L^p} d_R^r) [\overline{u_R^s} d_L^t] j_{(5)}^{\alpha\beta}$	$C_{prst,\alpha\beta}^{LRRL,S/P} = 0$
	$\tilde{\mathscr{O}}_{prst,\alpha\beta}^{LRRL,S/P} = (\overline{u_L^p} d_R^r] [\overline{u_R^s} d_L^t) j_{(5)}^{\alpha\beta}$	$\tilde{C}_{prst,\alpha\beta}^{LRRLS/P} = -4\sqrt{2}G_F V_{pt} C_{\bar{d}uLDL}^{rs\alpha\beta*}$

Master formula for the branching ratio in SMEFT

$$\begin{split} \frac{\mathcal{B}(e^{-}e^{-})}{\mathrm{GeV}^{6}} &= \frac{1.7 \times 10^{-33}}{\mathrm{GeV}^{6}} \frac{|m_{ee}|^{2}}{\mathrm{eV}^{2}} + 80 \left|\mathcal{Y}_{K1}^{ee}\right|^{2} + 4.3 \left|\mathcal{Y}_{\pi2}^{ee}\right|^{2} \\ &+ 10^{-3} \times \left(48 \left|\mathcal{X}_{1}^{ee}\right|^{2} + 45 \left|\mathcal{Y}_{K2}^{ee}\right|^{2} + 2.4 \left|\mathcal{Y}_{\pi2}^{ee}\right|^{2}\right) \\ &+ 10^{-8} \times \left(29 \left|\mathcal{Y}_{K3}^{ee}\right|^{2} + 23 \left|\mathcal{X}_{2}^{ee}\right|^{2} + 1.6 \left|\mathcal{Y}_{\pi3}^{ee}\right|^{2}\right) + \mathrm{int.}, \\ \frac{\mathcal{B}(\mu^{-}\mu^{-})}{\mathrm{GeV}^{6}} &= \frac{4.5 \times 10^{-34}}{\mathrm{GeV}^{6}} \frac{|m_{\mu\mu}|^{2}}{\mathrm{eV}^{2}} + 16 \left|\mathcal{Y}_{K1}^{\mu\mu}\right|^{2} + 2.2 \left|\mathcal{Y}_{\pi1}^{\mu\mu}\right|^{2} \\ &+ 10^{-3} \times \left(17 \left|\mathcal{X}_{1}^{\mu\mu}\right|^{2} + 19 \left|\mathcal{Y}_{K2}^{\mu\mu}\right|^{2} + |\mathcal{Y}_{\pi2}^{\mu\mu}|^{2}\right) \\ &+ 10^{-9} \times \left(67 \left|\mathcal{X}_{2}^{\mu\mu}\right|^{2} + 49 \left|\mathcal{Y}_{K3}^{\mu\mu}\right|^{2} + 6.6 \left|\mathcal{Y}_{\pi1}^{\mu\mu}\right|^{2}\right) + \mathrm{int.}, \end{split}$$

$$\frac{\mathcal{B}(e^{-}\mu^{-})}{\mathrm{GeV}^{6}} &= \frac{2.1 \times 10^{-33}}{\mathrm{GeV}^{6}} \frac{|m_{e\mu}|^{2}}{\mathrm{eV}^{2}} + 26 \left|\mathcal{Y}_{K1}^{\mu\mu}\right|^{2} + 17 \left|\mathcal{Y}_{K1}^{e\mu}\right|^{2} + 2 \left|\mathcal{Y}_{\pi1}^{e\mu}\right|^{2} + 1.4 \left|\mathcal{Y}_{\pi1}^{\mu\mu}\right|^{2} \\ &+ 10^{-3} \times \left(61 \left|\mathcal{X}_{1}^{e\mu}\right|^{2} + 35 \left|\mathcal{Y}_{K2}^{\mu\mu}\right|^{2} + 24 \left|\mathcal{Y}_{K2}^{e\mu}\right|^{2} + 1.9 \left|\mathcal{Y}_{\pi2}^{e\mu}\right|^{2} + 1.3 \left|\mathcal{Y}_{\pi2}^{\mu\mu}\right|^{2}\right) \\ &+ 10^{-9} \times \left(280 \left|\mathcal{X}_{2}^{e\mu}\right|^{2} + 110 \left|\mathcal{Y}_{K3}^{e\mu}\right|^{2} + 55 \left|\mathcal{Y}_{K3}^{\mu\mu}\right|^{2} + 6.7 \left|\mathcal{Y}_{\pi3}^{\mu\mu}\right|^{2} + 5.7 \left|\mathcal{Y}_{\pi3}^{e\mu}\right|^{2}\right) + \mathrm{int.}, \end{split}$$

• The dominant contribution is from the LD (neutrino exchange) !

Lower bounds (GeV) on NP scale from exp. data

$K^- ightarrow \pi^-$	$^{+}e^{-}e^{-}$	$K^- ightarrow \pi^+$	$\mu^{-}\mu^{-}$		$K^- \to \pi$	$e^+e^-\mu^-$	
names	bounds	names	bounds	names	bounds	names	bounds
$ \mathscr{Y}_{K1}^{ee} ^{-\frac{1}{3}}$	84.5	$ \mathscr{Y}_{K1}^{\mu\mu} ^{-\frac{1}{3}}$	85.1	$ \mathscr{Y}_{K1}^{\mu e} ^{-\frac{1}{3}}$	61.1	$ \mathscr{Y}_{K1}^{e\mu} ^{-\frac{1}{3}}$	56.9
$ \mathscr{Y}_{\pi 1}^{ee} ^{-\frac{1}{3}}$	51.9	$ \mathscr{Y}^{\mu\mu}_{\pi 1} ^{-\frac{1}{3}}$	61.2	$ \mathscr{Y}_{\pi 1}^{e\mu} ^{-\frac{1}{3}}$	39.8	$ \mathscr{Y}_{\pi 1}^{\mu e} ^{-\frac{1}{3}}$	37.5
$ \mathscr{X}_1^{ee} ^{-\frac{1}{3}}$	24.5	$ \mathscr{X}_1^{\mu\mu} ^{-\frac{1}{3}}$	32.3	$\left \mathscr{X}_{1}^{e\mu}\right ^{-\frac{1}{3}}$	22.3		
$ \mathscr{Y}_{K2}^{ee} ^{-\frac{1}{3}}$	24.3	$ \mathscr{Y}_{K2}^{\mu\mu} ^{-\frac{1}{3}}$	27.7	$\left \mathscr{Y}_{K2}^{\mu e}\right ^{-\frac{1}{3}}$	20.3	$ \mathscr{Y}_{K2}^{e\mu} ^{-\frac{1}{3}}$	19.1
$ \mathscr{Y}_{\pi 2}^{ee} ^{-\frac{1}{3}}$	14.9	$ \mathscr{Y}^{\mu\mu}_{\pi 2} ^{-\frac{1}{3}}$	17	$ \mathscr{Y}_{\pi 2}^{e\mu} ^{-\frac{1}{3}}$	12.5	$ \mathscr{Y}_{\pi 2}^{\mu e} ^{-\frac{1}{3}}$	11.7
$ \mathscr{X}_{2}^{ee} ^{-\frac{1}{3}}$	3.2	$ \mathscr{X}_{2}^{\mu\mu} ^{-\frac{1}{3}}$	3.4	$\left \mathscr{X}_{2}^{e\mu}\right ^{-\frac{1}{3}}$	2.9		
$ \mathscr{Y}_{K3}^{ee} ^{-\frac{1}{3}}$	3.3	$ \mathscr{Y}_{K3}^{\mu\mu} ^{-\frac{1}{3}}$	3.2	$ \mathscr{Y}_{K3}^{e\mu} ^{-\frac{1}{3}}$	2.6	$ \mathscr{Y}_{K3}^{\mu e} ^{-\frac{1}{3}}$	2.2
$ \mathscr{Y}_{\pi 3}^{ee} ^{-\frac{1}{3}}$	2	$ \mathscr{Y}^{\mu\mu}_{\pi3} ^{-\frac{1}{3}}$	2.3	$\left \mathscr{Y}_{\pi 3}^{\mu e}\right ^{-\frac{1}{3}}$	1.5	$ \mathscr{Y}_{\pi 3}^{e\mu} ^{-\frac{1}{3}}$	1.5

• Looser than those from nuclear $0\nu\beta\beta$, $\Lambda_{NP} > O(1) TeV$

• The much smaller data samples

BUT

- The second generation of leptons and quarks which are complementary to the study of $0\nu\beta\beta$

Predictions

• New bound on the branching ratio with $\Lambda_{NP} > 1 \ TeV$:

$$\mathcal{B}(e^-e^-) < 8.0 imes 10^{-17}, \ \mathcal{B}(\mu^-\mu^-) < 1.6 imes 10^{-17}, \ \mathcal{B}(e^-\mu^-) < 2.6 imes 10^{-17},$$

• Comparing with the current exps. :

 $egin{aligned} \mathcal{B}_{ ext{exp}}(e^-e^-) &< 2.2 imes 10^{-10}, \ \mathcal{B}_{ ext{exp}}(\mu^-\mu^-) &< 4.2 imes 10^{-11}, \ \mathcal{B}_{ ext{exp}}(e^-\mu^-) &< 5 imes 10^{-10}, \end{aligned}$

- Neutrino mass contributions are severely suppressed
- Several orders of magnitude smaller than the current experimental upper bounds.

Other processes

- LNV τ decays, $\tau^- \rightarrow P_i^- P_j^- l^+$ [2102.03491, Liao-Ma-Wang]
 - Involve the third generation lepton
 - Dispersion relation

- LNV nuclear processes, e.g. $\mu^- X \rightarrow e^+(\mu^+)X'$ [In preparation, Fan-Liao-Wang]
 - Chiral effective theory involving two nucleons [See other experts' talk]
 - Similar with the $0\nu\beta\beta$ in series of EFTs [Cirigliano-Dekens-Mereghetti-de Vries-... series of papers]
- LNV B, D decays [In preparation, Liao-Ma-Wang-Yu]
 - QCD sum rules & Heavy quark effective theory & more?

Summary

- We studied the LNV process in the series of EFTs
- Matching and running are done between different EFTs
- These studies are complementary to $0\nu\beta\beta$
- We systematically include the potential LNV sources
- The uncertainties can be systematically estimated

Thanks for you attention!

Backup Slides

Operators in LEFT

- Some remarks:
 - There are flavor symmetries in quark sector

 $\mathscr{O}_{prst}^{LLLL, \ S/P} = \mathscr{O}_{stpr}^{LLLL, \ S/P}, \ \mathscr{O}_{prst}^{LLLL, \ T} = -\mathscr{O}_{stpr}^{LLLL, \ T}, \ \widetilde{\mathcal{O}}_{prst}^{LLLL, \ T} = -\widetilde{\mathcal{O}}_{stpr}^{LLLL, \ T} \dots$

- Compared with the basis of N. Quintero [1606.03477], tensor lepton current and color exchanged operators are new
- Our results (5886) are confirmed by the Hilbert series method [1512.03433]
- When consider the sub-basis related with $0\nu\beta\beta$ process, we can get the relation between our basis and others[1511.03945, 1606.04549]

$$\begin{pmatrix} \mathcal{O}_{1}^{LL} \\ \mathcal{O}_{2}^{LL} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -4 - \frac{8}{N} & -8 \end{pmatrix} \begin{pmatrix} \mathcal{O}_{2RL} \\ \mathcal{O}_{2RL}^{\lambda} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -4 & -8 \end{pmatrix} \begin{pmatrix} \mathcal{O}_{udud}^{RLRL, S/P} \\ \mathcal{O}_{udud}^{RLRL, S/P} \\ \mathcal{O}_{udud}^{NLRL, S/P} \end{pmatrix}$$

One-loop QCD running effects for dim-9 operators

The final renormalization group running equations

$$\begin{split} \mu \frac{d}{d\mu} \begin{pmatrix} C_{pst}^{LUL,S/P} \\ C_{ptsr}^{LRL,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ \vdots \\ \mu \frac{d}{d\mu} \begin{pmatrix} C_{pst}^{LRLR,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ \vdots \\ z_{ntr}^{LRLR,S/P} \\ \vdots \\ z_{ntr}^{LRLR,S/P} \\ \vdots \\ \mu \frac{d}{d\mu} \begin{pmatrix} C_{pst}^{LRLR,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ C_{ptsr}^{LRLR,S/P} \\ \vdots \\ z_{ntr}^{LRLR,S/P} \\ z_{ntr}^{LRLR,S/P} \\ z_{ntr}^{LRLR,S/P} \\ \vdots \\ z_{ntr}^{LRLR,S/P} \\ z_{ntr}^{LRR,A} \\ z_{$$

The QCD running effect from $\Lambda_{\rm EW}$ to Λ_{χ}

• For dim-6 scalar and tensor operators,

$$C^{S}(\Lambda_{\chi}) = 1.656C^{S}(\Lambda_{\rm EW}), \ C^{S} \in \{C^{RL,S}_{pr\alpha\beta}, C^{LR,S}_{pr\alpha\beta}\}, \\ C^{LR,T}_{pr\alpha\beta}(\Lambda_{\chi}) = 0.845C^{LR,T}_{pr\alpha\beta}(\Lambda_{\rm EW}).$$

- The other dim-6 and -7 operators involve a quark vector current and thus do not run due to the QCD Ward identity.
- For dim-9 operators,

$$\begin{split} C^{LLLL,S/P}_{uiuj}(\Lambda_{\chi}) = & 0.78 C^{LLLL,S/P}_{uiuj}(\Lambda_{\rm EW}), \\ \tilde{C}^{LRRL,S/P}_{uiuj}(\Lambda_{\chi}) = & 0.88 \tilde{C}^{LRRL,S/P}_{uiuj}(\Lambda_{\rm EW}), \\ C^{LRRL,S/P}_{uiuj}(\Lambda_{\chi}) = & 0.62 \tilde{C}^{LRRL,S/P}_{uiuj}(\Lambda_{\rm EW}). \end{split}$$

Chiral logarithm

 In order to estimate the next leading order effects, we calculated the nonanalytic terms in 1-loop diagrams (a) and (b),

We can get the 34%, 32.5% and 31.3% 1-loop corrections relative to tree level results on M_{27×1}, M_{6×6} and M_{8×8}, respectively.

Chiral Lagarnagian

• The resulting effective Lagrangian for LD contributions

$$\begin{aligned} \mathscr{L}_{\chi\rm PT}^{(2)} &\supset F_0 \left[G_F \left(V_{ud} \partial_\mu \pi^- + V_{us} \partial_\mu K^- \right) \left(\overline{l_{L\alpha}} \gamma^\mu \nu_\alpha \right) + iB \left(c_{\pi 1}^{\alpha\beta} \pi^- + c_{K1}^{\alpha\beta} K^- \right) \left(\overline{l_{L\alpha}} \nu_\beta^C \right) \right. \\ &\left. - \left(c_{\pi 2}^{\alpha\beta} \partial_\mu \pi^- + c_{K2}^{\alpha\beta} \partial_\mu K^- \right) \left(\overline{l_{R\alpha}} \gamma^\mu \nu_\beta^C \right) - \left(c_{\pi 3}^{\alpha\beta} \partial_\mu \pi^- + c_{K3}^{\alpha\beta} \partial_\mu K^- \right) \left(\overline{l_{L\alpha}} i \overleftarrow{D}^\mu \nu_\beta^C \right) \right], \\ \left. c_{P_1 1}^{\alpha\beta} = \frac{\sqrt{2}}{2} \left(C_{ui\alpha\beta}^{RL,S} - C_{ui\alpha\beta}^{LR,S} \right), \qquad c_{P_1 2}^{\alpha\beta} = \frac{\sqrt{2}}{4} \left(C_{ui\alpha\beta}^{LL,V} - C_{ui\alpha\beta}^{RR,V} \right), \qquad c_{P_1 3}^{\alpha\beta} = \frac{\sqrt{2}}{4} \left(C_{ui\alpha\beta}^{LL,VD} - C_{ui\alpha\beta}^{RR,VD} \right), \end{aligned}$$

The resulting effective Lagrangian for SD contributions

$$\begin{aligned} \mathscr{L}_{K^{-} \to \pi^{+} l^{-} l^{-}} &= \frac{1}{2} K^{-} \pi^{-} \left[c_{1} \left(\bar{l} l^{C} \right) + c_{2} \left(\bar{l} \gamma_{5} l^{C} \right) \right] + \frac{1}{2} \left[c_{3} \partial^{\mu} K^{-} \pi^{-} + c_{4} \partial^{\mu} \pi^{-} K^{-} \right] \left(\bar{l} \gamma_{\mu} \gamma_{5} l^{C} \right) \\ &+ \frac{1}{2} \partial^{\mu} K^{-} \partial_{\mu} \pi^{-} \left[c_{5} \left(\bar{l} l^{C} \right) + c_{6} \left(\bar{l} \gamma_{5} l^{C} \right) \right], \end{aligned}$$

Where c_i s are combinations of the Wilson coefficients and the low energy constants (LECs) g_i s which can be determined by chiral symmetry and LQCD [1805.02634, 1806.02780]:

$$g_{27\times 1} = 0.38 \pm 0.08, \ g^a_{8\times 8} = 5.5 \pm 2 \text{ GeV}^2, \ g^b_{8\times 8} = 1.55 \pm 0.65 \text{ GeV}^2.$$

Lower bounds (GeV) on NP scale from LNV tau decays

$ au^+ ightarrow e^-$	$\pi^+\pi^+$	$ au^+ ightarrow e^- l$	K^+K^+		$ au^+ ightarrow e^-$	$K^+\pi^+$	
names	bounds	names	bounds	names	bounds	names	bounds
$ \mathscr{Y}_{\pi 1}^{e\tau} ^{-\frac{1}{3}}$	15.8	$ \mathscr{Y}_{K1}^{\tau e} ^{-\frac{1}{3}}$	6.4	$ \mathscr{Y}_{K1}^{\tau e} ^{-\frac{1}{3}}$	10.9	$ \mathscr{Y}_{K1}^{e\tau} ^{-\frac{1}{3}}$	10.7
$ \mathscr{Y}_{\pi 1}^{\tau e} ^{-\frac{1}{3}}$	14.8	$ \mathscr{Y}_{K1}^{e\tau} ^{-\frac{1}{3}}$	6.0	$ \mathscr{Y}_{\pi 1}^{e\tau} ^{-\frac{1}{3}}$	8.8	$ \mathscr{Y}_{\pi 1}^{\tau e} ^{-\frac{1}{3}}$	6.7
$\left \mathscr{Y}_{\pi 2}^{e\tau}\right ^{-\frac{1}{3}}$	6.8	$\left \mathscr{X}_{1,KK}^{\tau e}\right ^{-\frac{1}{3}}$	3.8	$\left \mathscr{Y}_{K2}^{\tau e}\right ^{-\frac{1}{3}}$	5.5	$\left \mathscr{Y}_{K2}^{e\tau}\right ^{-\frac{1}{3}}$	5.0
$\left \mathscr{Y}_{\pi 2}^{\tau e}\right ^{-\frac{1}{3}}$	6.8	$\left \mathscr{Y}_{K2}^{ au e}\right ^{-rac{1}{3}}$	2.9	$\left \mathscr{X}_{1,K\pi}^{\tau e}\right ^{-\frac{1}{3}}$	4.0		
$\left \mathscr{X}_{1,\pi\pi}^{\tau e}\right ^{-\frac{1}{3}}$	5.5	$\left \mathscr{Y}_{K2}^{e\tau}\right ^{-\frac{1}{3}}$	2.9	$\left \mathscr{Y}_{\pi 2}^{e\tau}\right ^{-\frac{1}{3}}$	3.4	$\left \mathscr{Y}_{\pi 2}^{ au e}\right ^{-rac{1}{3}}$	3.1
$\left \mathscr{X}_{2}^{\tau e}\right ^{-\frac{1}{3}}$	1.8	$ \mathscr{Y}_{K3}^{\tau e} ^{-\frac{1}{3}}$	0.7	$\left \mathscr{Y}_{K3}^{\tau e}\right ^{-\frac{1}{3}}$	1.3	$ \mathscr{Y}_{K3}^{e\tau} ^{-\frac{1}{3}}$	0.9
$ \mathscr{Y}_{\pi3}^{\tau e} ^{-\frac{1}{3}}$	1.6	$ \mathscr{Y}_{K3}^{e\tau} ^{-\frac{1}{3}}$	0.5	$ \mathscr{X}_{2}^{\tau e} ^{-\frac{1}{3}}$	1.0		
$ \mathscr{Y}_{\pi3}^{e\tau} ^{-\frac{1}{3}}$	1.0	$\left \mathscr{X}_{2}^{\tau e}\right ^{-\frac{1}{3}}$	0.4	$ \mathscr{Y}_{\pi 3}^{\tau e} ^{-\frac{1}{3}}$	0.7	$ \mathscr{Y}_{\pi 3}^{e\tau} ^{-\frac{1}{3}}$	0.6
$ au^+ ightarrow \mu^- \pi^+ \pi^+$ $ au^+ ightarrow \mu^- K^+ K^+$		$ au^+ ightarrow \mu^- K^+ \pi^+$					
$ au^+ ightarrow \mu^-$	$\pi^+\pi^+$	$ au^+ ightarrow \mu^-$.	K^+K^+		$ au^+ ightarrow \mu^-$	$-K^+\pi^+$	
$ au^+ ightarrow \mu^-$ names	$\pi^+\pi^+$ bounds	$ au^+ ightarrow \mu^-$ names	K ⁺ K ⁺ bounds	names	$ au^+ ightarrow \mu^-$ bounds	$K^+\pi^+$ names	bounds
$\frac{\tau^+ \to \mu^-}{\text{names}}$ $\frac{\left \mathscr{Y}_{\pi 1}^{\mu \tau}\right ^{-\frac{1}{3}}}{\left \mathscr{Y}_{\pi 1}^{\mu \tau}\right ^{-\frac{1}{3}}}$	$\frac{\pi^+\pi^+}{\text{bounds}}$ 13.7	$\frac{\tau^+ \to \mu^{-1}}{\text{names}}$ $ \mathscr{Y}_{K1}^{\tau\mu} ^{-\frac{1}{3}}$	K ⁺ K ⁺ bounds 6.0	names $\left \mathscr{Y}_{K1}^{\tau\mu}\right ^{-\frac{1}{3}}$	$\tau^+ \rightarrow \mu^-$ bounds 10.1	$\frac{ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}}}{ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}}}$	bounds 9.8
$\begin{aligned} \tau^+ \to \mu^- \\ \text{names} \\ \left\ \mathscr{Y}^{\mu\tau}_{\pi 1} \right\ ^{-\frac{1}{3}} \\ \left\ \mathscr{Y}^{\tau\mu}_{\pi 1} \right\ ^{-\frac{1}{3}} \end{aligned}$	$\frac{\pi^+\pi^+}{\text{bounds}}$ $\frac{13.7}{13.0}$	$\tau^+ \to \mu^-$ names $ \mathscr{Y}_{K1}^{\tau\mu} ^{-\frac{1}{3}}$ $ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}}$	$ \frac{K^+K^+}{\text{bounds}} $ 6.0 5.5	names $\left \mathscr{Y}_{K1}^{\tau\mu}\right ^{-\frac{1}{3}}$ $\left \mathscr{Y}_{\pi 1}^{\mu\tau}\right ^{-\frac{1}{3}}$	$\frac{\tau^+ \rightarrow \mu^-}{\text{bounds}}$ 10.1 7.9	$ \frac{ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}}}{ \mathscr{Y}_{\pi1}^{\tau\mu} ^{-\frac{1}{3}}} $	bounds 9.8 6.2
$\begin{aligned} \tau^+ &\to \mu^- \\ \text{names} \\ & \left \mathscr{Y}^{\mu\tau}_{\pi 1} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}^{\tau\mu}_{\pi 1} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}^{\mu\tau}_{\pi 2} \right ^{-\frac{1}{3}} \end{aligned}$	$\pi^+\pi^+$ bounds 13.7 13.0 5.9	$\begin{aligned} \tau^+ \to \mu^-, \\ \text{names} \\ \mathscr{Y}_{K1}^{\tau\mu} ^{-\frac{1}{3}} \\ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}} \\ \mathscr{X}_{LK}^{\tau\mu} ^{-\frac{1}{3}} \end{aligned}$	$ \frac{K^+K^+}{\text{bounds}} 6.0 5.5 3.6 $	names $\left \mathscr{Y}_{K1}^{\tau\mu}\right ^{-\frac{1}{3}}$ $\left \mathscr{Y}_{\pi1}^{\mu\tau}\right ^{-\frac{1}{3}}$ $\left \mathscr{Y}_{K2}^{\tau\mu}\right ^{-\frac{1}{3}}$	$\frac{\tau^+ \rightarrow \mu^-}{\text{bounds}}$ 10.1 7.9 5.1	$ \frac{ \mathscr{Y}_{K1}^{\mu\tau} ^{-\frac{1}{3}}}{ \mathscr{Y}_{K1}^{\tau\mu} ^{-\frac{1}{3}}} \\ \frac{ \mathscr{Y}_{K1}^{\tau\mu} ^{-\frac{1}{3}}}{ \mathscr{Y}_{K2}^{\mu\tau} ^{-\frac{1}{3}}} $	bounds 9.8 6.2 4.6
$\begin{aligned} \tau^+ &\to \mu^- \\ \text{names} \\ & \left \mathscr{Y}_{\pi 1}^{\mu \tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \end{aligned}$	$ \pi^+ \pi^+ bounds 13.7 13.0 5.9 5.9 $	$\begin{aligned} \tau^+ \to \mu^-, \\ \text{names} \\ & \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{1,KK}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \end{aligned}$	$ \frac{K^{+}K^{+}}{\text{bounds}} 6.0 5.5 3.6 2.7 $	names $\left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}}$ $\left \mathscr{Y}_{\pi1}^{\mu\tau} \right ^{-\frac{1}{3}}$ $\left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}}$ $\left \mathscr{X}_{1,K\pi}^{\tau\mu} \right ^{-\frac{1}{3}}$	$\frac{\tau^+ \rightarrow \mu^-}{\text{bounds}}$ 10.1 7.9 5.1 3.7	$ \frac{\left \mathscr{Y}_{K1}^{\mu\tau}\right ^{-\frac{1}{3}}}{\left \mathscr{Y}_{K1}^{\tau\mu}\right ^{-\frac{1}{3}}} \\ \left \mathscr{Y}_{\pi1}^{\tau\mu}\right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\mu\tau}\right ^{-\frac{1}{3}} $	bounds 9.8 6.2 4.6
$\begin{aligned} \tau^+ &\to \mu^- \\ \text{names} \\ & \left \mathscr{Y}_{\pi 1}^{\mu \tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 1}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{1,\pi \pi}^{\tau \mu} \right ^{-\frac{1}{3}} \end{aligned}$	$ \frac{\pi^{+}\pi^{+}}{\text{bounds}} $ 13.7 13.0 5.9 5.9 4.9	$\begin{aligned} \tau^+ \to \mu^-, \\ \text{names} \\ & \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{1,KK}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\mu\tau} \right ^{-\frac{1}{3}} \end{aligned}$	$ \frac{K^+K^+}{bounds} 6.0 5.5 3.6 2.7 2.7 $	names $\begin{aligned} \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{\pi1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{X}_{1,K\pi}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{\pi2}^{\mu\tau} \right ^{-\frac{1}{3}} \end{aligned}$	$\tau^+ \to \mu^-$ bounds 10.1 7.9 5.1 3.7 3.1	$\begin{aligned} & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi2}^{\tau\mu} \right ^{-\frac{1}{3}} \end{aligned}$	bounds 9.8 6.2 4.6 2.8
$\begin{aligned} \tau^+ &\to \mu^-\\ \text{names} \\ & \left \mathscr{Y}_{\pi 1}^{\mu \tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{2}^{\tau \mu} \right ^{-\frac{1}{3}} \end{aligned}$	$ \pi^+ \pi^+ bounds 13.7 13.0 5.9 5.9 4.9 1.5 $	$\begin{aligned} \tau^+ \to \mu^-, \\ \text{names} \\ & \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{1,KK}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K3}^{\mu\tau} \right ^{-\frac{1}{3}} \end{aligned}$		names $\begin{aligned} \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{R2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K3}^{\mu\tau} \right ^{-\frac{1}{3}} \end{aligned}$	$\tau^+ \to \mu^-$ bounds 10.1 7.9 5.1 3.7 3.1 1.1	$\begin{aligned} & \overline{\mathscr{Y}_{K1}^{\mu\tau}}^{-\frac{1}{3}} \\ & \overline{\mathscr{Y}_{K1}^{\mu\tau}}^{-\frac{1}{3}} \\ & \overline{\mathscr{Y}_{K2}^{\tau\mu}}^{-\frac{1}{3}} \\ & \overline{\mathscr{Y}_{K2}^{\tau\mu}}^{-\frac{1}{3}} \\ & \overline{\mathscr{Y}_{K2}^{\mu\tau}}^{-\frac{1}{3}} \\ & \overline{\mathscr{Y}_{K3}^{\mu\tau}}^{-\frac{1}{3}} \end{aligned}$	bounds 9.8 6.2 4.6 2.8 0.8
$\begin{aligned} \tau^+ &\to \mu^-\\ \text{names} \\ & \left \mathscr{Y}_{\pi 1}^{\mu \tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{1,\pi \pi}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{2}^{\tau \mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi 3}^{\tau \mu} \right ^{-\frac{1}{3}} \end{aligned}$	$ \frac{\pi^{+}\pi^{+}}{\text{bounds}} $ 13.7 13.0 5.9 5.9 4.9 1.5 1.4	$\begin{aligned} \tau^+ \to \mu^-, \\ \text{names} \\ & \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{1,KK}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K3}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{X}_{2}^{\tau\mu} \right ^{-\frac{1}{3}} \end{aligned}$		names $\begin{aligned} \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{\pi1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{\pi2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K3}^{\tau\mu} \right ^{-\frac{1}{3}} \\ \left \mathscr{Y}_{K3}^{\tau\mu} \right ^{-\frac{1}{3}} \end{aligned}$	$\tau^+ \to \mu^-$ bounds 10.1 7.9 5.1 3.7 3.1 1.1 0.9	$\begin{aligned} & \left \mathscr{Y}_{K1}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{\pi1}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\tau\mu} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K2}^{\mu\tau} \right ^{-\frac{1}{3}} \\ & \left \mathscr{Y}_{K3}^{\mu\tau} \right ^{-\frac{1}{3}} \end{aligned}$	bounds 9.8 6.2 4.6 2.8 0.8

Looser than bounds from LNV kaon decays

Dispersion relation

- Chiral expansion: in derivatives of the NGBs and in powers of light quark masses
- The invariant mass of $P_i P_j$ system can be considerable to Λ_{χ} for tau decay

