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Nucl-ex/th is here!



  

What is EFT – a classical example

multipole expansions in electrodynamics

r
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Charge distribution

Low energy 
constants 

(LECs)

Power counting

Based on dimensional 
analysis

Symmetries of E&M
(Without knowing ½(R))

Systematic low- energy 
approximation 

Much more nontrivial in quantum systems!

Separation of scales



Chiral EFT

Low-energy approximation of QCD, expansion in Q/M_hi 
Q: small external momenta 
Mhi : EFT breakdown scale (~500 MeV?)
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◆ Q: generic external momenta,

Mlo = m⇡, f⇡ ⇠ 100MeV

Mhi = ⇤SB ,m⇢, · · · ⇠ 1GeV

Systematic approximation 
→  able to estimate theoretical errors  
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2.1.2. Chiral limit
The terminology chiral limit refers to massless quarks, resulting in an important additional global symmetry of the QCD

Lagrangian which will be discussed in the following. We introduce the chirality matrix �5 = � 5 = i� 0� 1� 2� 3 = �
Ñ
5 ,

{� µ, �5} = 0, � 2
5 = 1, and define the projection operators

PL =
1
2
(1 � �5) = PÑ

L , PR =
1
2
(1 + �5) = PÑ

R . (11)

These operators satisfy the completeness relation PL + PR = 1, are idempotent, P2
L = PL, P2

R = PR, and respect the orthog-
onality relations PLPR = PRPL = 0. When applied to the solutions of the free massless Dirac equation, the operators PR and
PL project to the positive and negative helicity eigenstates — hence the subscripts R and L for right-handed and left-handed,
respectively.

Omitting color and flavor indices, we introduce left- and right-handed quark fields as

qL = PLq and qR = PRq. (12)

A quadratic form containing any of the 16 independent 4 ⇥ 4 matrices {1, � µ, �5, �
µ�5, �

µ⌫} can be decomposed as

q̄�iq =

⇢
q̄L�1qL + q̄R�1qR for �1 2 {� µ, � µ�5}

q̄R�2qL + q̄L�2qR for �2 2 {1, �5, �
µ⌫

},
(13)

where

q̄R = q̄PL and q̄L = q̄PR.

The validity of Eq. (13) is general and does not refer to ‘‘massless’’ quark fields.
From a phenomenological point of view, the u and d quarks and, to a lesser extent, also the s quark have relatively small

masses in comparison to a typical hadronic scale of the order of 1 GeV. On the other hand, we will neglect the three heavy
quarks c , b, and t , because we will restrict ourselves to energies well below the production threshold of particles containing
a heavy (anti-) quark. In the following, we will approximate the full QCD Lagrangian by its light-flavor version, and will
consider the chiral limit for the three light quarks u, d, and s. To that end, we apply Eq. (13) to the term containing the
contraction of the covariant derivative with � µ. This quadratic quark form decouples into the sum of two terms which
connect only left-handed with left-handed and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

L0
QCD =

X

l=u,d,s

(q̄R,li 6D qR,l + q̄L,li 6D qL,l) �
1
4

Gaµ⌫G
µ⌫
a . (14)

Note that, because of Eq. (13), the quark-mass term generates a coupling between left- and right-handed quark fields.

2.1.3. Global symmetry currents of the light quark sector
Due to the flavor independence of the covariant derivative, L0

QCD is invariant under the infinitesimal global transforma-
tions of the left- and right-handed quark fields,

qL ⌘

 uL
dL
sL

!

7!

 

1 � i
8X

a=1

✏L
a
�a

2
� i✏L

!

qL,

qR ⌘

 uR
dR
sR

!

7!

 

1 � i
8X

a=1

✏R
a
�a

2
� i✏R

!

qR. (15)

Note that the Gell-Mannmatrices act in flavor space.L0
QCD is said to have a classical globalU(3)L⇥U(3)R symmetry. Applying

Noether’s theorem [21–23], from such an invariance, one would expect a total of 2 ⇥ (8 + 1) = 18 conserved currents:

Lµ
a = q̄L� µ �a

2
qL, Lµ

= q̄L� µqL, Rµ
a = q̄R� µ �a

2
qR, Rµ

= q̄R� µqR. (16)

Making use of

PL� µPR ± PR� µPL =

⇢
� µ

� µ�5,

we introduce the linear combinations

Vµ
a = Rµ

a + Lµ
a = q̄� µ �a

2
q, (17)

Aµ
a = Rµ

a � Lµ
a = q̄� µ�5

�a

2
q, (18)
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(   )SU(3)L
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(   )SU(3)R

Includes all symmetries of QCD, especially (approximate) 
chiral symmetry and its spontaneous breaking

Flavor u d s

Charge [e] 2/3 −1/3 −1/3

Mass [MeV] 1.5 − 3.3 3.5 − 6.0 70 − 130

Flavor c b t

Charge [e] 2/3 −1/3 2/3

Mass [GeV] 1.27+0.07
−0.11 4.20+0.17

−0.07 171.2 ± 2.1

Table 2: Quark flavors and their charges and masses. See [Manohar and Sachrajda, 2008] for details.

Suppressing the Dirac spinor index and introducing for each quark flavor f a color triplet

qf =




qf,1

qf,2

qf,3



 , (2)

the gauge principle is applied with respect to the group SU(3), i.e., all qf are subject to the same local
SU(3) transformation:

qf "→ q′f = exp

(

−i
8∑

a=1

Θa
λc

a

2

)

qf = Uqf , (3)

where the eight λc
a denote Gell-Mann matrices acting in color space and the Θa are smooth, real functions

in Minkowski space. Whenever convenient, we will make use of the summation convention implying a
summation over repeated indices. Introducing eight gauge potentials Aaµ, transforming as

Aµ ≡ Aaµ
λc

a

2
"→ A′

µ = UAµU
† +

i

g3
∂µUU †, (4)

the covariant derivative of the quark field, by construction, transforms as the quark field:

Dµqf ≡ (∂µ + ig3Aµ)qf "→ (Dµqf)
′ = D′

µq
′
f = UDµqf . (5)

In Eq. (5), g3 denotes the strong coupling constant. In order to treat the gauge potentials as dynamical
degrees of freedom, one defines a generalization of the field strength tensor to the non-Abelian case as

Gaµν = ∂µAaν − ∂νAaµ − g3fabcAbµAcν, (6)

where, suppressing the superscript c in the Gell-Mann matrices, the standard totally antisymmetric
SU(3) structure constants are given by (see Table 3)

fabc =
1

4i
Tr([λa, λb]λc). (7)

Given Eq. (4), the field strength tensor transforms under SU(3) as

Gµν ≡ Gaµν
λc

a

2
"→ UGµνU

†. (8)

The QCD Lagrangian obtained by applying the gauge principle to the free Lagrangian of Eq. (1), finally,
reads

LQCD =
∑

f= u,d,s,
c,b,t

q̄f(iD/ − mf )qf − 1

4
GaµνGµν

a . (9)

5

Lagrangian invariant when mf → 0, but broken by QCD ground state 

Chiral EFT

→ chiral symmetry nonlinearly 
realized by hadronic Dofs

CCWZ; Weinberg; …

• Only two flavors used in our work



The most general Lagrangian has infinitely many 
parameters

Chiral EFT

� gA
2f⇡

N†⌧a~� · ~r⇡aN � 1

4f2
⇡

N†✏abc⌧a⇡b⇡̇cN

… 



Short-range interactions: large numbers of 4N operators

�C(s)(NTP (s)
i N)†(NTP (s)
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f = 131MeV is the pion-decay constant, the chiral covariant derivative is Dµ = ∂µ +
1
2 (ξ ∂µξ†+ξ† ∂µξ), andmξ = 1

2 (ξmqξ +ξ†mqξ†), wheremq = diag(mu,md) is the quark
mass matrix. At the order we are working ωTr(mξ ) = ω(mu + md) = m2

π = (137 MeV)2.
In Eq. (2), s = 1S0 or 3S1. Below this superscript will be dropped when it is clear from the
context which channel is being referred to or when the reference is to both channels. The
two-body nucleon operators are:
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where the projection matrices are
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and←→∇ =←−∇ −−→∇ . The derivatives in Eqs. (4) and (5) should really be chirally covariant,
however, only the ordinary derivatives are needed for the calculations in this paper.
Ultraviolet divergences are regulated using dimensional regularization. All spin and

isospin traces are done in n dimensions, where d = n + 1 is the space–time dimension.
Regulating the theory in this way preserves the chiral and rotational symmetry of the theory
as well as the Wigner symmetry [38,39] of the leading-order Lagrangian, as discussed in
Ref. [35].
The KSW power counting is manifest in renormalization schemes such as power

divergence subtraction (PDS) [14,15] or off-shell momentum subtraction (OS) [37,40,41].
(In this paper the PDS schemewill be used.) In these schemes the coefficients of the S-wave
operators in Eq. (4) scale as C

(s)
2n ∼ 1/(MΛnµn+1), where µ is the renormalization scale,

and Λ is the range of the effective field theory. The renormalization scale is chosen to be
on the order of the nucleon momentum p which is of ordermπ . Letting µ∼ p ∼mπ ∼Q

the scaling of the coefficients in Eq. (2) is:

LO: C
(s)
0 (µ)∼ 1/Q, (6)

NLO: p2C
(s)
2 (µ)∼Q0, m2

π D
(s)
2 (µ)∼Q0,

NNLO: p4C
(s)
4 (µ)∼Q, m2

πp2E
(s)
4 (µ)∼Q, m4

π D
(s)
4 (µ)∼Q,

p2C(SD)
2 (µ)∼Q.

Note that from simple dimensional analysis one would expect these coefficients to scale as
C2n ∼ 1/(MΛ2n+1). However, these coefficients are larger than naive dimensional analysis
predicts because the theory flows to a nontrivial fixed point for a→±∞. (See Refs. [15,
42,43] for a more detailed explanation.) Since C

(s)
0 (µ)∼ 1/Q, and each nucleon loop gives
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Power counting: long-range physics

• Focus on loop momenta ~ external momenta Q 

• Pion line or photon line ~ 1/Q2 , nucleon line in irreducible diagrams ~ 1/Q 

• Nucleon line in reducible diagrams ~ mN/Q2   
⇒ Explain why we solve the Schrodinger eqn 
⇒ Explain why nuclei bound 

• Strength of OPE ~  (numerical factor  for small l,  for 
large l by centrifugal  suppression)

al fπ al ∼ 1 al ≫ 1

⇠ 1

f2
⇡

Q2

m2
⇡ +Q2

⇠ 1

f2
⇡

⇠ 1

f2
⇡

mN

4⇡f⇡

Q

alf⇡
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Q ∼ mπTypical size of external momenta:

NN reducible



Power counting: short-range physics

• Strength of OPE  may have impact on contacts through 
renormalization 

• Coexistence of  and  makes NDA no longer reliable 

• Operators gaining large anomalous dimension through nuclear 
dynamics → “irrelevant” operators become relevant

al fπ

al fπ Mhi

⇠ 1

f2
⇡

mN

4⇡f⇡

Q

alf⇡
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Renormalizing



Need to re-examine contact operators

24 contacts 
in NDA up to Q4 

1
M2

hi

1
M4

hi



Counting short-range operators

• At any given order in a power counting scheme, there must 
be enough operators to satisfy renormalization group 
invariance 
    
   ⇒ explicit checking UV cutoff independence 
   ⇒ model independence 

• In terms of Wilson’s RG 
   
  1. Assume O be irrelevant (statement of PC) 
  2. Run RGE 
  3. Will O stay irrelevant in EFT? 



What cutoff?
• Potentials: two-nucleon irreducible diagrams

……V =

T(0) = T(0)V(0) V(0)+

• Lippmann-Schwinger eqn (equivalent to Schrodinger eqn)

Λ: UV cutoff
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FIG. 8. Binding energies of the spurious bound states in selected
attractive triplet channels, before the introduction of the required
counterterms.

at other energies are cutoff independent for ! >∼ 8 fm−1.
Figures 11 and 12 summarize the analogous results for the
3P2-3F2 and 3D2 partial waves, respectively. The fits were
performed using the 3P2 phase shift at 50 MeV and the 3D2
phase shift at 100 MeV. We confirm the cutoff independence
(for large !) in all phase shifts and mixing parameters.

An alternative to absorbing the cutoff dependence in
the various P waves individually would be to employ one
counterterm with tensor structure. Unfortunately, we have not
been able to implement this idea without introducing cutoff
dependence in the 3P1 wave.

After removing the cutoff dependence by adding appro-
priate counterterms, we still find spurious bound states in
the 3P0,

3 D2, and also the 3S1-3D1 channels. However, the
cutoff dependence of the binding energies is now completely
different, as shown in Fig. 13. As desired, only 3S1-3D1 has a
shallow bound state, the deuteron, which is cutoff independent
over almost the entire ! range; the deuteron binding energy is
predicted to be 1.92 MeV in this LO calculation. The bound
states in the other channels are all very deep. A new bound
state appears with infinite binding energy around the cutoff
at which the corresponding counterterm is singular, and then
approaches a constant, large binding energy for increasing !.

These bound states are beyond the range of the EFT, and they
are irrelevant for the low-energy physics.

With the added counterterms, we obtain a very decent
description of the phase shifts. Figure 14 shows that our 3P0
result follows the energy dependence of the Nijmegen PWA
remarkably well. Obviously, the addition of the counterterm
is here supported by the experimental data. In the coupled
3P2-3F2 channels the agreement with the PWA below 50 MeV
is still satisfactory. We emphasize that the 3F2 phase and
the mixing parameter ε2 are predictions. Choosing a high
cutoff ! clearly does not compromise the description of these
observables

For the 3D2 phase (see Fig. 15), we find again a good
agreement with the PWA. Here, we also included the prediction
based on a calculation without a counterterm, for ! =
8.0 fm−1 in the plateau region of Fig. 9. For low energies below
50 MeV, the results are comparable. The deviations from the
PWA become significant toward higher energies, where the
plateau seen in Fig. 9 is more and more tilted. For these higher
energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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C3P0~p · ~p0 ⇠
Q2

m2
hi

C3P0~p · ~p0 ⇠
Q2

m2
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O(Q2) O(1)

WPC RG inv. counting

• Contacts needed at LO in attractive 
triplet channels: 3P2 - 3F2, 3D2, 3D3 …

Renormalizing singular attraction

Phase shifts vs. Λ



Renormalizing singular attraction

V r

Λ-1

VL ∝ −
1
r3

Unphysical 
bound states

V r

Λ-1

VL ∝ −
1
r3

Vs

⟹

Beane et al (’01) 
Pavon Valderrama & Ruiz Arriola (’05 ~ ’07) 
Nogga et al (’05)

  

But, is there a real problem?

Q^2 & Q^3

Large subleading corrections in 3P0

Nogga et al (’05)

LO
PWA

Modify PC



Modified power counting for chiral nuclear forces

• LO : (C + OPE) for 1S0, 3S1, 3P0  

• NLO : Q2 C.T. for 1S0; OPE for 1P1, 3P1, 3P2… 

• N2LO: (Q4 C.T. + TPE) for 1S0; (Q2 C.T. + TPE) for 3S1-3D1 
and 3P0 

• N3LO: …. 
           

Nogga et al. ’05 
BwL & Yang ’11, ’12  
Wu & BwL ’19 

(perturbative OPE 
for most waves)
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nd elastic scattering Preliminary

Tlab 1 MeV 2 MeV 3 MeV

LO -20.2 -28.3 -37

NLO -22.2 -33.1 -40.4

AV14 -17.8 -28 -34.9

Phase shift in degrees (jπ = 1/2+ ,  S wave)
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1-body

2-body direct transitions
FIG. 4: The deuteron decay via n� n̄ oscillation. LO + NLO are shown.

FIG. 5: Deuteron ! deuteron amplitude via n� n̄.

Therefore, ⌃Ndecay, at least up to NLO, is pure imaginary, and the deuteron decay width is found

to be

�N decay
d =

⇣
�n decay + �p decay

⌘
(1 + ⇢) . (29)

B. Via n� n̄

Now we calculate the deuteron decay width via n � n̄. The LO and NLO are given by Fig. 4

with the final states Vn summed over. The total annihilation cross section of n̄p is needed in order

to obtain the deuteron decay width from Fig. 4. This can be achieved through the imaginary part

of the n̄p elastic scattering amplitude by optical theorem.

In NLO, the UV divergence in the 2-point n̄� p loop can be absorbed into bare parameter Dt
T

in the same way as Eq. (17) is obtained. Up to NLO, Fig. 5 gives

⌃n�n̄
d = � 1

8⇡

g
2
t m

3
N

⌧2nn̄ 
2

�
a
t
n̄p + a

t
n̄p
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�
. (30)

We arrive at, up to NLO,

�n�n̄
d = �⌧

�2
nn̄ 

�1
mN Im

⇥
a
t
n̄p(1 + ⇢+ a

t
n̄p)

⇤
. (31)

On the other hand, the deuteron decay can be caused by other |�B| = 2 operators such as

NN ! mesons terms in the Lagrangian (20), see Fig. 6. Assuming that the power counting is

consistent with naive dimensional analysis, we estimate the size of the deuteron decay amplitude

in Fig. 6. For simplicity, consider the cases in which Vm = Wm. Notice that Am in Eq. (15) has

the same dimension as ⇠m term in Eq. (20). On the other hand, we expect ⇠m / ⌧
�1
nn̄ because they

are generated by the similar operators at quark level. Therefore, the most optimistic esitmation

13

Deuteron decay by NN → NNbar

N
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neutron-antineutron osc.Oosterhof, BWL, de Vries, Timmermans & van Kolck 
PRL 122 (2019) 17, 172501 



Direct NN annihilation

N

N
FIG. 6: Deuteron decay via NN ! mesons.

for the size of ⇠m is ⇠m ⇠ ⌧
�1
nn̄An/Mhi. In addition, the extra antinucleon propagator in LO of

Fig. 4 contributes ⇠ mN/
2. We conclude on the dimensional ground that the contribution of

Fig. 6, relative to LO in Fig. 4 is suppresed by O(2/mNMhi). This power counting is justified

by renormalization. The fact that the decay width in Eq. (31) does not posses any UV divergence

makes it unnecessary to entail ⇠ns as short-range counterterms in LO and/or NLO. The conclusion

that the contributions from Fig. 6 are small is significant in that other |�B| = 2 interations would

not contaminate the extraction of n� n̄ oscillation time from the life time of the deuteron.

We have expressed the deuteron width in terms of the 3
S1 n̄p scattering length, atn̄p. Unfor-

tunately, low-energy N̄N data are scarce, especially in the n̄p channel. This channel has isospin

I = 1, which, together with I = 0 states, contributes also to p̄p and n̄n scattering. An e↵ective-

range analysis that includes the Coulomb interaction can be used to disentangle the I = 0, 1

components. However, to the best of our knowledge only spin-averaged scattering lengths aavI have

been determined this way, and in particular [32]

a
av
1 = � (0.3 + i0.8) fm. (32)

It is di�cult to estimate the uncertainty in this determination but it is possibly of the order of

50% if one compares with previous determinations of the same type [32]. Moreover, an attempt to

isolate the 3
S1 component in p̄p leads to Im(atp̄p) of about half this size [33]. If we replace a

t
n̄p in

Eq. (31) by a
av
1 , we find at LO

�n�n̄ ,(0)
d = ⌧

�2
nn̄

⇥
(0.43± 0.12)⇥ 10�22sec

⇤
, (33)

while LO + NLO is

�n�n̄ ,(0+1)
d = ⌧

�2
nn̄

⇥
(0.84± 0.17)⇥ 10�22sec

⇤
. (34)

replace numbers above

The fairly large correction is due to the numerical di↵erence between the real and imaginary

part of atp̄p and that ⇢ ⇠ 0.4. Ref. [20] has the closest approach to ours and hence the closest

numerical result,

�n�n̄
d = ⌧

�2
nn̄

⇥
(0.5� 0.8)⇥ 10�22sec

⇤
. (35)
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e.g.

• To what extent can we disentangle these 
mechanisms?



Finally…

NN range
Re(anbar-p)

pion
NN $ NN̄

<latexit sha1_base64="2+S+0O2Z2UnzRPrE+ScjjPhDHpM="></latexit>

w/ unknown B0

• Perturbative pion allows for analytic expression 

• Loosely bound neutron helps sensitivity (nuclei with neutron halo?) 

• B0 gives largest uncertainty 

• W/ nonperturbative pion EFT, unknown LECs may have smaller impact

Oosterhof, BwL, de Vries, Timmermans & van Kolck 
PRL 122 (2019) 17, 172501 



Chiral effective field theory 

L = LQCD + LFermi −mββνL
TCνL

 
Neutrinos are still degrees of  freedom in the low-energy EFT 
 
LO interaction : 
 

Leads to long-range nnà pp + ee    
 
 

`Hard’ neutrino exchange         à short-range operators 

~ GeV  

~100 MeV 

light quarks and gluons + electrons + neutrinos 

νL νL ~ mββ pn

pn
e
e

(E, !p > Λ χ )

~
mββ

q2

n

pn

p

e

e

 
Expected at N2LO 

q ~ kF ~ mπ

~
mββ

Λ χ
2



The neutrino amplitude 

Vν = (2GF
2mββ )τ1

+τ2
+ 1
!q2
1− gA

2 !σ1 ⋅
!
σ 2 −

!
σ1 ⋅
!q
!
σ 2 ⋅
!q 2mπ

2 +
!q2

(mπ
2 +
!q2 )2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⊗ eLeL

c

pn

pn
e
e

•  At LO the ‘standard’ mechanism is long-range 
 
 
 

 

Aν = + + +

€ 

Vstrong

€ 

Vstrong

€ 

Vstrong

€ 

Vstrong

€ 

Vstrong

€ 

Vstrong

+



Can show analytically (dim-reg) two-loop diagram with two C0  is UV divergent 

~ (1+ 2gA
2 ) mNC0

4π
⎛

⎝
⎜

⎞

⎠
⎟
2 1
ε
+ log µ

2

p2
⎛

⎝
⎜

⎞

⎠
⎟

Non-perturbative renormalization 

R(Λ,E) = Aν (Λ,E)
Aν (Λ = 2 fm−1,E)

E = 50 MeV

R(Λ,E) =

 numerical result 

 fit to: 

a+ b log (Λ fm)

Confirmed numerically for nn à pp +ee 

E =10 MeV

Kaplan et al ’98 



Summary

• Chiral EFT has infinite number of LECs  
→ power counting is crucial


• NDA good for counting long-range physics, but unreliable 
for short-range interactions


• RG analysis (UV cutoff independence) can be used as 
guideline to test PC for short-range physics 


