

Chiral nuclear effective field theory

Renormalization and power counting

龙炳蔚 四川大学

BSM nuclear physics

BSM	$\Lambda_{ m BSM}$	10? TeV	
Standard M	$M_{ m H}$	100 GeV	
 chiral EFT pionless EFT 	Λ_χ	1 GeV	chiral sym. breaking
	Λ_{nuc}	~ 100 MeV	avg. nucleon momentum inside nuclei
	γ_D	45 MeV	very small nuclear scales
	$1/a_{1S0}$	8 MeV	

Perturbative QCD N/A

What is EFT - a classical example

Much more nontrivial in quantum systems!

Chiral EFT

Low-energy approximation of QCD, expansion in Q/M_hi
 Q: small external momenta
 M_{hi}: EFT breakdown scale (-500 MeV?)

$$\mathcal{M} = \sum_{n} \left(\frac{Q}{M_{hi}}\right)^{n} \mathcal{F}_{n}\left(\frac{Q}{M_{lo}}\right)$$

Q: generic external momenta, $M_{hi} = \Lambda_{SB}, m_{\rho}, \dots \sim 1 \text{GeV}$ $M_{lo} = m_{\pi}, f_{\pi} \sim 100 \text{MeV}$

Systematic approximation → able to estimate theoretical errors

Chiral EFT

 Includes all symmetries of QCD, especially (approximate) chiral symmetry and its spontaneous breaking

$$\mathcal{L}_{\text{QCD}} = \sum_{f = u, d, s, \atop f \in \mathcal{U}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} \mathcal{G}_{a \mu \nu} \mathcal{G}_a^{\mu \nu}$$
$$q_L \equiv \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \mapsto \left(\mathbf{SU(3)}_L \right) \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \qquad q_R \equiv \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} \mapsto \left(\mathbf{SU(3)}_R \right) \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix}$$

- Only two flavors used in our work
 - Lagrangian invariant when $m_f \rightarrow 0$, but broken by QCD ground state

Chiral EFT

The most general Lagrangian has infinitely many parameters

• Short-range interactions: large numbers of 4N operators

$$-C^{(s)}(N^{T}P_{i}^{(s)}N)^{\dagger}(N^{T}P_{i}^{(s)}N) - C_{2}^{(s)}\left[(N^{T}P_{i}^{(s)}N)^{\dagger}(N^{T}P_{i}^{(s')}\overleftarrow{\nabla}^{2}N) + h.c.\right] \cdots \\ -C^{(ss')}(N^{T}P_{i}^{(s)}N)^{\dagger}(N^{T}P_{i}^{(s')}N) \cdots P_{i}^{(^{1}S_{0})} = \frac{(i\sigma_{2})(i\tau_{2}\tau_{i})}{2\sqrt{2}} \\ \mathbf{s, s'} = \mathbf{1S_{0}, \mathbf{3S_{1}, \mathbf{3P_{0}, \dots}} P_{i}^{(^{3}S_{1})} = \frac{(i\sigma_{2}\sigma_{i})(i\tau_{2})}{2\sqrt{2}} \\ P_{i}^{(^{3}D_{1})} = \left(\overleftarrow{\nabla}_{i}\overleftarrow{\nabla}_{j} - \frac{\delta_{ij}}{n}\overleftarrow{\nabla}^{2}\right)P_{j}^{(^{3}S_{1})}$$

NN contact pot. in mom. spapce

$$V_{1S0} = c_0^{1S0} + c_2^{1S0}(p^2 + p'^2) + \cdots$$
$$V_{3P0} = c_0^{3P0}pp' + \cdots$$

Naive dim. analysis (NDA):

$$c_2^{1S0} \sim c_0^{3P0} \sim \frac{c_0^{1S0}}{M_{hi}^2}$$

Power counting: long-range physics

Typical size of external momenta: $Q \sim m_{\pi}$

$$\boxed{\qquad } \sim \frac{1}{f_\pi^2} \frac{Q^2}{m_\pi^2 + Q^2} \sim \frac{1}{f_\pi^2} \qquad \boxed{\qquad } \sim \frac{1}{f_\pi^2} \frac{m_N}{4\pi f_\pi} \frac{Q}{a_l f_\pi}$$

NN reducible

- Focus on loop momenta ~ external momenta Q
- Pion line or photon line ~ $1/Q^2$, nucleon line in irreducible diagrams ~ 1/Q
- Nucleon line in reducible diagrams ~ m_N/Q² ⇒ Explain why we solve the Schrodinger eqn ⇒ Explain why nuclei bound
- Strength of OPE ~ $a_l f_{\pi}$ (numerical factor $a_l \sim 1$ for small $l, a_l \gg 1$ for large l by centrifugal suppression)

Power counting: short-range physics

- Strength of OPE $a_l f_{\pi}$ may have impact on contacts through renormalization
- Coexistence of $a_l f_{\pi}$ and M_{hi} makes NDA no longer reliable
- Operators gaining large anomalous dimension through nuclear dynamics → "irrelevant" operators become relevant

Need to re-examine contact operators

Counting short-range operators

• At any given order in a power counting scheme, there must be enough operators to satisfy renormalization group invariance

⇒ explicit checking UV cutoff independence
⇒ model independence

• In terms of Wilson's RG

1. Assume O be irrelevant (statement of PC)

- 2. Run RGE
- 3. Will O stay irrelevant in EFT?

What cutoff?

• Potentials: two-nucleon irreducible diagrams

Renormalizing singular attraction

Nogga, Timmerman & van Kolck (2005)

Solid: Tlab = 10 MeV, dashed: 50 MeV

• Contacts needed at LO in attractive triplet channels: 3P2 - 3F2, 3D2, 3D3 ...

Renormalizing singular attraction

Beane et al ('01) Pavon Valderrama & Ruiz Arriola ('05 ~ '07) Nogga et al ('05)

Modified power counting for chiral nuclear forces

Nogga et al. '05 BwL & Yang '11, '12 Wu & BwL '19

- LO : (C + OPE) for 1S0, 3S1, **3P0** (perturbative OPE for most waves)
- NLO : Q² C.T. for 1S0; OPE for 1P1, 3P1, 3P2...
- N2LO: (Q⁴ C.T. + TPE) for 1S0; (Q² C.T. + TPE) for 3S1-3D1 and 3P0
- N3LO:

Triton BE and charge radius^{Preliminary}

nd elastic scattering Preliminary

Phase shift in degrees $(j^{\pi} = 1/2^+, S \text{ wave})$

Tlab	1 MeV	2 MeV	3 MeV
LO	-20.2	-28.3	-37
NLO	-22.2	-33.1	-40.4
AV14	-17.8	-28	-34.9

Deuteron decay by $NN \rightarrow NNbar$

Oosterhof, BWL, de Vries, Timmermans & van Kolck PRL 122 (2019) 17, 172501

neutron-antineutron osc.

Direct NN annihilation

• To what extent can we disentangle these mechanisms?

Finally...

Oosterhof, BwL, de Vries, Timmermans & van Kolck PRL 122 (2019) 17, 172501

 $R_d \equiv \Gamma_d^{-1} / \tau_{n\bar{n}}^2$

$$R_{d} = -\left[\frac{m_{N}}{\kappa} \operatorname{Im} a_{\bar{n}p}(1+0.40+0.20-0.13\pm0.4)\right]^{-1}$$
$$= (1.1\pm0.3) \times 10^{22} \text{ s}^{-1}.$$

- Perturbative pion allows for analytic expression
- Loosely bound neutron helps sensitivity (nuclei with neutron halo?)
- B₀ gives largest uncertainty
- W/ nonperturbative pion EFT, unknown LECs may have smaller impact

Chiral effective field theory

~ GeV $L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L$ light quarks and gluons + electrons + neutrinos

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

`Hard' neutrino exchange $(E, |\vec{p}| > \Lambda_{\chi}) \rightarrow$ short-range operators

Expected at N²LO

 $\sim \frac{m_{\beta\beta}}{\Lambda_{\chi}^2}$

The neutrino amplitude

• At LO the 'standard' mechanism is long-range

$$V_{v} = (2G_{F}^{2}m_{\beta\beta})\tau_{1}^{+}\tau_{2}^{+}\frac{1}{\vec{q}^{2}}\left[1 - g_{A}^{2}\left(\vec{\sigma}_{1}\cdot\vec{\sigma}_{2} - \vec{\sigma}_{1}\cdot\vec{q}\vec{\sigma}_{2}\cdot\vec{q}\frac{2m_{\pi}^{2} + \vec{q}^{2}}{(m_{\pi}^{2} + \vec{q}^{2})^{2}}\right)\right] \otimes \overline{e}_{L}e_{L}^{c}$$

Non-perturbative renormalization Kaplan et al '98

Can show analytically (dim-reg) two-loop diagram with two C_0 is UV divergent

Confirmed numerically for nn \rightarrow pp +ee $R(\Lambda, E) = \frac{A_v(\Lambda, E)}{A_v(\Lambda = 2fm^{-1}, E)}$

Summary

- Chiral EFT has infinite number of LECs
 → power counting is crucial
- NDA good for counting long-range physics, but unreliable for short-range interactions
- RG analysis (UV cutoff independence) can be used as guideline to test PC for short-range physics