Chiral nuclear effective field theory

－Renormalization and power counting

龙炳蔚
四川大学

粒子物理与核物理结合，大有可为

Nucleons are the essential building blocks of Matter！

BSM nuclear physics

BSM	$\Lambda_{\text {BSM }}$	$10^{?} \mathrm{TeV}$	
Standard M	M_{H}	100 GeV	
	Λ_{χ}	1 GeV	chiral sym. breaking
chiral EFT	$\Lambda_{n u c}$	$\sim 100 \mathrm{MeV}$	avg. nucleon momentum inside nuclei
pionless EFT		45 MeV	very small nuclear scales
	$1 / a_{1 S 0}$	8 MeV	

Perturbative QCD N/A

What is EFT - a classical example

Systematic low- energy
approximation

$$
V=\frac{q}{R}\left[1+\mathcal{O}\left(\frac{r_{0}}{R}\right)+\mathcal{O}\left(\frac{r_{0}^{2}}{R^{2}}\right)+\cdots\right]
$$

Much more nontrivial in quantum systems!

Chiral EFT

- Low-energy approximation of QCD, expansion in Q/M_hi Q: small external momenta M_{hi} : EFT breakdown scale (-500 MeV ?)

$$
\mathcal{M}=\sum_{n}\left(\frac{Q}{M_{h i}}\right)^{n} \mathcal{F}_{n}\left(\frac{Q}{M_{l o}}\right) \begin{aligned}
& \text { Q: generic external momenta, } \\
& M_{h i}=\Lambda_{S B}, m_{\rho}, \cdots \sim 1 \mathrm{GeV} \\
& M_{l o}=m_{\pi}, f_{\pi} \sim 100 \mathrm{MeV}
\end{aligned}
$$

Systematic approximation
\rightarrow able to estimate theoretical errors

Chiral EFT

- Includes all symmetries of QCD, especially (approximate) chiral symmetry and its spontaneous breaking

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=\sum_{f=u, d_{, s,}} \bar{q}_{f}\left(i \not D-m_{f}\right) q_{f}-\frac{1}{4} \mathcal{G}_{a \mu \nu} \mathcal{G}_{a}^{\mu \nu} \\
\left.q_{L} \equiv\left(\begin{array}{l}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right) \mapsto\left(\mathbf{S U}(\mathbf{3})_{L}\right)\left(\begin{array}{l}
u_{L} \\
d_{L} \\
s_{L}
\end{array}\right) \quad q_{R} \equiv\left(\begin{array}{l}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right) \mapsto(\mathbf{S U (3)})_{R}\right)\left(\begin{array}{l}
u_{R} \\
d_{R} \\
s_{R}
\end{array}\right)
\end{gathered}
$$

- Only two flavors used in our work

Lagrangian invariant when $\boldsymbol{m}_{f} \rightarrow \mathbf{0}$, but broken by QCD ground state

Chiral EFT

The most general Lagrangian has infinitely many parameters

$-\frac{g_{A}}{2 f_{\pi}} N^{\dagger} \tau_{a} \vec{\sigma} \cdot \vec{\nabla} \pi_{a} N$
$-\frac{1}{4 f_{\pi}^{2}} N^{\dagger} \epsilon_{a b c} \tau_{a} \pi_{b} \dot{\pi}_{c} N$

- Short-range interactions: large numbers of 4 N operators

$$
\begin{array}{r}
-C^{(s)}\left(N^{T} P_{i}^{(s)} N\right)^{\dagger}\left(N^{T} P_{i}^{(s)} N\right)-C_{2}^{(s)}\left[\left(N^{T} P_{i}^{(s)} N\right)^{\dagger}\left(N^{T} P_{i}^{\left(s^{\prime}\right)} \ddot{\nabla}^{2} N\right)+h . c .\right] \\
-C^{\left(s s^{\prime}\right)}\left(N^{T} P_{i}^{(s)} N\right)^{\dagger}\left(N^{T} P_{i}^{\left(s^{\prime}\right)} N\right) \quad \ldots \quad P_{i}^{\left({ }^{1} S_{0}\right)}=\frac{\left(i \sigma_{2}\right)\left(i \tau_{2} \tau_{i}\right)}{2 \sqrt{2}} \\
\mathbf{S}, \mathbf{S}^{\mathbf{\prime}}=\mathbf{1} \mathbf{S}_{\mathbf{0}}, \mathbf{3} \mathbf{S}_{1}, \mathbf{3} \mathbf{P}_{\mathbf{0}}, \ldots \\
P_{i}^{\left(3 S_{1}\right)}=\frac{\left(i \sigma_{2} \sigma_{i}\right)\left(i \tau_{2}\right)}{2 \sqrt{2}} \\
P_{i}^{\left(3 D_{1}\right)}=\left(\overleftrightarrow{\nabla}_{i} \overleftrightarrow{\nabla}_{j}-\frac{\left.\delta_{i j} \overleftrightarrow{\nabla}^{2}\right) P_{j}^{\left(3 S_{1}\right)}}{n}\right.
\end{array}
$$

NN contact

$$
V_{1 S 0}=c_{0}^{1 S 0}+c_{2}^{1 S 0}\left(p^{2}+p^{\prime 2}\right)+\cdots
$$

pot. in mom.
spapce

$$
V_{3 P 0}=c_{0}^{3 P 0} p p^{\prime}+\cdots
$$

Naive dim. analysis (NDA):

$$
c_{2}^{1 S 0} \sim c_{0}^{3 P 0} \sim \frac{c_{0}^{1 S 0}}{M_{h i}^{2}}
$$

Power counting: long-range physics

Typical size of external momenta: $Q \sim m_{\pi}$

- Focus on loop momenta \sim external momenta Q
- Pion line or photon line $\sim 1 / \mathrm{Q}^{2}$, nucleon line in irreducible diagrams $\sim 1 / \mathrm{Q}$
- Nucleon line in reducible diagrams $\sim \mathrm{m}_{\mathrm{N}} / \mathrm{Q}^{2}$ \Rightarrow Explain why we solve the Schrodinger eqn
\Rightarrow Explain why nuclei bound
- Strength of OPE $\sim a_{l} f_{\pi}$ (numerical factor $a_{l} \sim 1$ for small $l, a_{l} \gg 1$ for large l by centrifugal suppression)

Power counting: short-range physics

- Strength of OPE $a_{l} f_{\pi}$ may have impact on contacts through renormalization
- Coexistence of $a_{l} f_{\pi}$ and $M_{h i}$ makes NDA no longer reliable
- Operators gaining large anomalous dimension through nuclear dynamics \rightarrow "irrelevant" operators become relevant

Need to re-examine contact operators

2N force

24 contacts in NDA up to Q^{4}

$\mathrm{Q}^{2} \frac{1}{M_{h i}^{2}}$

Counting short-range operators

- At any given order in a power counting scheme, there must be enough operators to satisfy renormalization group invariance
\Rightarrow explicit checking UV cutoff independence
\Rightarrow model independence
- In terms of Wilson's RG

1. Assume O be irrelevant (statement of PC)
2. Run RGE
3. Will O stay irrelevant in EFT?

Renormalizing singular attraction

Nogga, Timmerman \& van Kolck (2005)

$$
C_{3 P 0} \vec{p} \cdot \vec{p}^{\prime} \sim \frac{Q^{2}}{m_{h i}^{2}} \quad C_{3 P 0} \vec{p} \cdot \vec{p}^{\prime} \sim \frac{Q^{2}}{m_{l o}^{2}}
$$

Phase shifts vs. Λ

Solid: Tlab = 10 MeV , dashed: 50 MeV
$O\left(Q^{2}\right)$
$O(1)$
WPC RG inv. counting

- Contacts needed at LO in attractive triplet channels: 3P2-3F2, 3D2, 3D3 ...

Renormalizing singular attraction

Beane et al ('01)
Pavon Valderrama \& Ruiz Arriola ('05 ~ '07)
Nogga et al ('05)

Modified power counting for chiral nuclear forces

Nogga et al. '05 BwL \& Yang '11, '12 Wu \& BwL '19

- LO : (C + OPE) for $1 \mathrm{~S} 0,3 \mathrm{~S} 1,3 \mathrm{P} 0$
(perturbative OPE
for most waves)
- NLO : Q ${ }^{2}$ C.T. for 1 S 0 ; OPE for $1 \mathrm{P} 1,3 \mathrm{P} 1,3 \mathrm{P} 2 \ldots$
- N2LO: (Q4 C.T. + TPE) for 1S0; (Q ${ }^{2}$ C.T. + TPE) for 3S1-3D1 and 3P0
- N3LO:

Triton BE and charge radius ${ }^{\text {Prelimininary }}$

nd elastic scattering

Phase shift in degrees $\left(\mathrm{j}^{\pi}=1 / 2^{+}, \mathrm{S}\right.$ wave $)$

Tlab	1 MeV	2 MeV	3 MeV
LO	-20.2	-28.3	-37
NLO	-22.2	-33.1	-40.4
AV14	-17.8	-28	-34.9

Deuteron decay by NN \rightarrow NNbar

Oosterhof, BWL, de Vries, Timmermans \& van Kolck PRL 122 (2019) 17, 172501
neutron-antineutron osc.

1-body

2-body direct transitions

Direct $N N$ annihilation

- To what extent can we disentangle these mechanisms?

Finally...

Oosterhof, BwL, de Vries, Timmermans \& van Kolck

$$
\begin{aligned}
& R_{d} \equiv \Gamma_{d}^{-1} / \tau_{n \bar{n}}^{2} \\
& \text { PRL } 122 \text { (2019) 17, } 172501 \\
& \operatorname{Re}\left(a_{\text {nbar-p }}\right) \quad N N \leftrightarrow N \bar{N} \\
& \boldsymbol{R}_{d}=-\left[\frac{m_{N}}{\kappa} \operatorname{Im} a_{\bar{n} p}(1+0.40+0.20-0.13 \pm 0.4)\right]^{\text {pion range }} \begin{array}{r}
\text { w/ unknown } \\
B_{0} \\
-1
\end{array} \\
& =(1.1 \pm 0.3) \times 10^{22} \mathrm{~s}^{-1} \text {. }
\end{aligned}
$$

- Perturbative pion allows for analytic expression
- Loosely bound neutron helps sensitivity (nuclei with neutron halo?)
- B_{0} gives largest uncertainty
- W/ nonperturbative pion EFT, unknown LECs may have smaller impact

Chiral effective field theory

$\sim \mathrm{GeV} \quad L=L_{Q C D}+L_{F e r m i}-m_{\beta \beta} v_{L}^{T} C v_{L}$ light quarks and gluons + electrons + neutrinos
$\sim 100 \mathrm{MeV}$ Neutrinos are still degrees of freedom in the low-energy EFT

LO interaction : $\nu_{L} \longleftrightarrow \square \nu_{L} \sim m_{\beta \beta}$

$`$ Hard' neutrino exchange $\left(E,|\vec{p}|>\Lambda_{\chi}\right) \rightarrow$ short-range operators

Expected at $\mathrm{N}^{2} \mathrm{LO}$

$$
\sim \frac{m_{\beta \beta}}{\Lambda_{\chi}^{2}}
$$

The neutrino amplitude

$$
V_{v}=\left(2 G_{F}^{2} m_{\beta \beta}\right) \tau_{1}^{+} \tau_{2}^{+} \frac{1}{\vec{q}^{2}}\left[1-g_{A}^{2}\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}-\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q} \frac{2 m_{\pi}^{2}+\vec{q}^{2}}{\left(m_{\pi}^{2}+\vec{q}^{2}\right)^{2}}\right)\right] \otimes \bar{e}_{L} e_{L}^{c}
$$

Non-perturbative renormalization

Can show analytically (dim-reg) two-loop diagram with two C_{0} is UV divergent

$$
\sim\left(1+2 g_{A}^{2}\right)\left(\frac{m_{N} C_{0}}{4 \pi}\right)^{2}\left(\frac{1}{\varepsilon}+\log \frac{\mu^{2}}{p^{2}}\right)
$$

Confirmed numerically for $\mathrm{nn} \rightarrow \mathrm{pp}+$ ee $\quad R(\Lambda, E)=\frac{A_{v}(\Lambda, E)}{A_{v}\left(\Lambda=2 f^{-1}, E\right)}$

Summary

- Chiral EFT has infinite number of LECs \rightarrow power counting is crucial
- NDA good for counting long-range physics, but unreliable for short-range interactions
- RG analysis (UV cutoff independence) can be used as guideline to test PC for short-range physics

