Nuclear matrix elements for neutrinoless double beta decay

Dong-Liang Fang
Institute of Modern Physics, Chinese Academy of Sciences

Outline

- Background
- Theoretical approaches and results
- Attempts of measuring the NME
- Conclusions and Outlook

Background

- Theoretical descriptions of Ovßß from new physics to nuclear physics

Cirigliano 18'

Background

- Theoretical descriptions of $0 v \beta \beta$ from new physics to nuclear physics

Cirigliano 18'

Background

- Theoretical descriptions of $0 v \beta \beta$ from new physics to nuclear physics

Cirigliano 18'

Background

- Theoretical descriptions of Ovßß from new physics to nuclear physics

Cirigliano 18'

Background

- The master formula for decay width $\left(0^{+}->0^{+}\right)$: Cirigliano 18'

$$
\begin{aligned}
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=g_{A}^{4}\left\{G_{01}\right. & \left(\left|\mathcal{A}_{\nu}\right|^{2}+\left|\mathcal{A}_{R}\right|^{2}\right)-2\left(G_{01}-G_{04}\right) \operatorname{Re} \mathcal{A}_{\nu}^{*} \mathcal{A}_{R}+4 G_{02}\left|\mathcal{A}_{E}\right|^{2} \\
& +2 G_{04}\left[\left|\mathcal{A}_{m_{e}}\right|^{2}+\operatorname{Re}\left(\mathcal{A}_{m_{e}}^{*}\left(\mathcal{A}_{\nu}+\mathcal{A}_{R}\right)\right)\right] \\
& -2 G_{03} \operatorname{Re}\left[\left(\mathcal{A}_{\nu}+\mathcal{A}_{R}\right) \mathcal{A}_{E}^{*}+2 \mathcal{A}_{m_{e}} \mathcal{A}_{E}^{*}\right] \\
& \left.+G_{09}\left|\mathcal{A}_{M}\right|^{2}+G_{06} \operatorname{Re}\left[\left(\mathcal{A}_{\nu}-\mathcal{A}_{R}\right) \mathcal{A}_{M}^{*}\right]\right\} .
\end{aligned}
$$

- Here A's are combinations of the $\beta \beta$ decay NMEs and LECs
- G's are the phase space factors and are trivial for numerical calculations

Background

$$
\begin{aligned}
& \mathcal{A}_{\nu}=\frac{m_{\beta \beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)}+\frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M}=\frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{M}^{(9)} \\
& \mathcal{A}_{E}=\mathcal{M}_{E, L}^{(6)}+\mathcal{M}_{E, R}^{(6)} \quad \mathcal{A}_{m_{e}}=\mathcal{M}_{m_{e}, L}^{(6)}+\mathcal{M}_{m_{e}, R}^{(6)} \quad \mathcal{A}_{R}=\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{R}^{(9)}
\end{aligned}
$$

- M's here are the combinations of NMEs, for the neutrino mass mechanism, we have M_{F}, Mg_{G} and M_{T}

$$
\begin{aligned}
\mathcal{M}_{\nu}^{(3)}= & -V_{u d}^{2}\left(-\frac{1}{g_{A}^{2}} M_{F}+\mathcal{M}_{G T}+\mathcal{M}_{T}+2 \frac{m_{\pi}^{2} g_{\nu}^{N N}}{g_{A}^{2}} M_{F, s d}\right), \\
\mathcal{M}_{\nu}^{(9)}= & -\frac{1}{2 m_{N}^{2}} C_{\pi \pi \mathrm{L}}^{(9)}\left(\frac{1}{2} M_{G T, s d}^{A P}+M_{G T, s d}^{P P}+\frac{1}{2} M_{T, s d}^{A P}+M_{T, s d}^{P P}\right) \quad \mathcal{M}_{R}^{(9)}=\left.\mathcal{M}_{\nu}^{(9)}\right|_{L \rightarrow R} \\
& +\frac{m_{\pi}^{2}}{2 m_{N}^{2}} C_{\pi N \mathrm{~L}}^{(9)}\left(M_{G T, s d}^{A P}+M_{T, s d}^{A P}\right)-\frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{N N \mathrm{~L}}^{(9)} M_{F, s d}, \\
\left(T_{1 / 2}^{0 \nu}\right)^{-1}= & g_{A}^{4} G_{01}\left(\left|\mathrm{~A}_{\nu}\right|^{2}+\left|\mathrm{A}_{R}\right|^{2}\right)
\end{aligned}
$$

Background

$$
\begin{aligned}
& \mathcal{A}_{\nu}=\frac{m_{\beta \beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)}+\frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M}=\frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{M}^{(9)} \\
& \mathcal{A}_{E}=\mathcal{M}_{E, L}^{(6)}+\mathcal{M}_{E, R}^{(6)} \quad \mathcal{A}_{m_{e}}=\mathcal{M}_{m_{e}, L}^{(6)}+\mathcal{M}_{m_{e}, R}^{(6)} \quad \mathcal{A}_{R}=\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{R}^{(9)}
\end{aligned}
$$

- M's here are the combinations of NMEs, for the neutrino mass mechanism, we have M_{F}, Mgt and M_{T}

$$
\begin{aligned}
& \mathcal{M}_{\nu}^{(3)}=-V_{u d}^{2}\left(-\frac{1}{g_{A}^{2}} M_{F}+\mathcal{M}_{G T}+\mathcal{M}_{T}+2 \frac{m_{\pi}^{2} g_{\nu}^{N N}}{g_{A}^{2}} M_{F, s d}\right), \\
& \mathcal{M}_{\nu}^{(9)}=-\frac{1}{2 m_{N}^{2}} C_{\pi \pi \mathrm{L}}^{(9)}\left(\frac{1}{2} M_{G T, s d}^{A P}+M_{G T, s d}^{P P}+\frac{1}{2} M_{T, s d}^{A P}+M_{T, s d}^{P P}\right) \quad \mathcal{M}_{R}^{(9)}=\left.\mathcal{M}_{\nu}^{(9)}\right|_{L \rightarrow R} \\
&+\frac{m_{\pi}^{2}}{2 m_{N}^{2}} C_{\pi N \mathrm{~L}}^{(9)}\left(M_{G T, s d}^{A P}+M_{T, s d}^{A P}\right)-\frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{N N \mathrm{~L}}^{(9)} M_{F, s d}, \\
&\left(T_{1 / 2}^{0 \nu}\right)^{-1}=g_{A}^{4} G_{01}\left(\left|\mathrm{~A}_{\nu}\right|^{2}+\left|\mathrm{A}_{R}\right|^{2}\right)
\end{aligned}
$$

Background

$$
\begin{aligned}
& \mathcal{A}_{\nu}=\frac{m_{\beta \beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)}+\frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M}=\frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{M}^{(9)} \\
& \mathcal{A}_{E}=\mathcal{M}_{E, L}^{(6)}+\mathcal{M}_{E, R}^{(6)} \quad \mathcal{A}_{m_{e}}=\mathcal{M}_{m_{e}, L}^{(6)}+\mathcal{M}_{m_{e}, R}^{(6)} \quad \mathcal{A}_{R}=\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{R}^{(9)}
\end{aligned}
$$

- M's here are the combinations of NMEs, for the neutrino mass mechanism, we have $\mathrm{M}_{\mathrm{F}}, \mathrm{Mat}_{\mathrm{G}}$ and M_{t}

$$
\begin{aligned}
\mathcal{M}_{\nu}^{(3)}= & -V_{u d}^{2}\left(-\frac{1}{g_{A}^{2}} M_{F}+\mathcal{M}_{G T}+\mathcal{M}_{T}+2 \frac{m_{\pi}^{2} g_{\nu}^{N N}}{g_{A}^{2}} M_{F, s d}\right), \\
\mathcal{M}_{\nu}^{(9)}= & -\frac{1}{2 m_{N}^{2}} C_{\pi \pi \mathrm{L}}^{(9)}\left(\frac{1}{2} M_{G T, s d}^{A P}+M_{G T, s d}^{P P}+\frac{1}{2} M_{T, s d}^{A P}+M_{T, s d}^{P P}\right) \quad \mathcal{M}_{R}^{(9)}=\left.\mathcal{M}_{\nu}^{(9)}\right|_{L \rightarrow R} \\
& +\frac{m_{\pi}^{2}}{2 m_{N}^{2}} C_{\pi N \mathrm{~L}}^{(9)}\left(M_{G T, s d}^{A P}+M_{T, s d}^{A P}\right)-\frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{N N \mathrm{~L}}^{(9)} M_{F, s d}, \\
\left(T_{1 / 2}^{0 \nu}\right)^{-1}= & g_{A}^{4} G_{01}\left(\left|\mathrm{~A}_{\nu}\right|^{2}+\left|\mathrm{A}_{R}\right|^{2}\right)
\end{aligned}
$$

Background

$$
\begin{aligned}
& \mathcal{A}_{\nu}=\frac{m_{\beta \beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)}+\frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M}=\frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)}+\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{M}^{(9)} \\
& \mathcal{A}_{E}=\mathcal{M}_{E, L}^{(6)}+\mathcal{M}_{E, R}^{(6)} \quad \mathcal{A}_{m_{e}}=\mathcal{M}_{m_{e}, L}^{(6)}+\mathcal{M}_{m_{e}, R}^{(6)} \quad \mathcal{A}_{R}=\frac{m_{N}^{2}}{m_{e} v} \mathcal{M}_{R}^{(9)}
\end{aligned}
$$

- M's here are the combinations of NMEs, for the neutrino mass mechanism, we have $\mathrm{M}_{\mathrm{F}}, \mathrm{M}_{\mathrm{G}}$ and M_{T}

$$
\begin{aligned}
\mathcal{M}_{\nu}^{(3)}= & -V_{u d}^{2}\left(-\frac{1}{g_{A}^{2}} M_{F}+\mathcal{M}_{G T}+\mathcal{M}_{T}+2 \frac{m_{\pi}^{2} g_{\nu}^{N N}}{g_{A}^{2}} M_{F, s d}\right), \\
\mathcal{M}_{\nu}^{(9)}= & -\frac{1}{2 m_{N}^{2}} C_{\pi \pi \mathrm{L}}^{(9)}\left(\frac{1}{2} M_{G T, s d}^{A P}+M_{G T, s d}^{P P}+\frac{1}{2} M_{T, s d}^{A P}+M_{T, s d}^{P P}\right) \\
& +\frac{m_{\pi}^{2}}{2 m_{N}^{2}} C_{\pi N \mathrm{~L}}^{(9)}\left(M_{G T, s d}^{A P}+M_{T, s d}^{A P}\right)-\frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{N N \mathrm{~L}}^{(9)} M_{F, s d},
\end{aligned}
$$

$$
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=g_{A}^{4} G_{01}\left(\left|\mathrm{~A}_{\nu}\right|^{2}+\left|\mathrm{A}_{R}\right|^{2}\right)
$$

Background

- Mf, Mgt and Mt are the long range Fermi, Gamow-Teller and tensor part we are familiar with

$$
\mathcal{M}_{G T}=M_{G T}^{A A}+M_{G T}^{A P}+M_{G T}^{P P}+M_{G T}^{M M} \quad \mathcal{M}_{T}=M_{T}^{A P}+M_{T}^{P P}+M_{T}^{M M}
$$

- Where

$$
M_{I}^{K}=\langle f| \frac{2 R}{\pi} \int h_{I}^{K}(q) j_{I}(q r) \frac{q d q}{q+E_{N}} \mathcal{O}_{I}|i\rangle
$$

- Short range NMEs are similar $M_{I, s d}^{K}=\langle f| \frac{2 R}{\pi} \int h_{I}^{K}(q) j_{I}(q r) \frac{q^{2} d q}{q+E_{N}} \widehat{O}_{I}|i\rangle$
- All these M's can be expressed in 15 NMEs
$M_{F} \quad M_{G T}^{A A} \quad M_{G T}^{A P} \quad M_{G T}^{P P} \quad M_{G T}^{M M} \quad M_{T}^{A A} \quad M_{T}^{A P} \quad M_{T}^{P P} \quad M_{T}^{M M}$
$M_{F, s d} \quad M_{G T, s d}^{A A} \quad M_{G T, s d}^{A P} \quad M_{G T, s d}^{P P} \quad M_{T, s d}^{A P} \quad M_{T, s d}^{P P}$

Background

Stefanik 18’

- A comparison with LR symmetric model in traditional treatment where left- and right-handed neutrino are treated equally (short range mechanism neglected)

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 \nu}\right]^{-1} } & =g_{A}^{4}\left|M_{G T}\right|^{2}\left\{C_{m m}\left(\frac{\left|m_{\beta \beta}\right|}{m_{e}}\right)^{2}+C_{m \lambda} \frac{\left|m_{\beta \beta}\right|}{m_{e}}\langle\lambda\rangle \cos \psi_{1}\right. \\
& \left.+C_{m \eta} \frac{\left|m_{\beta \beta}\right|}{m_{e}}\langle\eta\rangle \cos \psi_{2}+C_{\lambda \lambda}\langle\lambda\rangle^{2}+C_{\eta \eta}\langle\eta\rangle^{2}+C_{\lambda \eta}\langle\lambda\rangle\langle\eta\rangle \cos \left(\psi_{1}-\psi_{2}\right)\right\}
\end{aligned}
$$

- Where

$$
\begin{aligned}
C_{m m}= & \left(1-\chi_{F}+\chi_{T}\right)^{2} G_{01}, & C_{\eta \eta}= & \chi_{2+}^{2} G_{02}+\frac{1}{9} \chi_{1-}^{2} G_{011}-\frac{2}{9} \chi_{1-} \chi_{2+} G_{010}+\chi_{P}^{2} G_{08} \\
C_{m \lambda}= & -\left(1-\chi_{F}+\chi_{T}\right)\left[\chi_{2-} G_{03}-\chi_{1+} G_{04}\right], & & -\chi_{P} \chi_{R} G_{07}+\chi_{R}^{2} G_{09}, \\
C_{m \eta}= & \left(1-\chi_{F}+\chi_{T}\right)\left[\chi_{2+} G_{03}-\chi_{1-} G_{04}\right. & C_{\lambda \eta}= & -2\left[\chi_{2-} \chi_{2+} G_{02}-\frac{1}{9}\left(\chi_{1+} \chi_{2+}+\chi_{2-} \chi_{1-}\right) G_{010}\right. \\
& \left.-\chi_{P} G_{05}+\chi_{R} G_{06}\right], & & \left.+\frac{1}{9} \chi_{1+} \chi_{1-} G_{011}\right] .
\end{aligned}
$$

$C_{\lambda \lambda}=\chi_{2-}^{2} G_{02}+\frac{1}{9} \chi_{1+}^{2} G_{011}-\frac{2}{9} \chi_{1+} \chi_{2-} G_{010}$,

Background

- The rich structures for these NMEs are simulated

$$
\chi_{1 \pm}=\chi_{q G T}-6 \chi_{q T} \pm 3 \chi_{q F}, \quad \chi_{2 \pm}=\chi_{G T \omega}+\chi_{T \omega} \pm \chi_{F \omega}-\frac{1}{9} \chi_{1 \mp} .
$$

- These are terms from the helicity exchange terms in neutrino propagator

$$
\begin{aligned}
& M_{\omega F, \omega G T, \omega T}=\sum\left\langle A_{f}\left\|h_{\omega F, \omega G T, \omega T}\left(r_{-}\right) \mathcal{O}_{F, G T, T}\right\| A_{i}\right\rangle \\
& M_{q F, q G T, q T}=\sum\left\langle A_{f}\left\|h_{q F, q G T, q T}\left(r_{-}\right) \mathcal{O}_{F, G T, T}\right\| A_{i}\right\rangle
\end{aligned}
$$

- And also time-space components and recoil terms

$$
\begin{aligned}
& M_{P}=\sum i\left\langle A_{f}\left\|h_{P}\left(r_{-}\right) \tau_{r}^{+} \tau_{s}^{+} \frac{\left(\mathbf{r}_{-} \times \mathbf{r}_{+}\right)}{R^{2}} \cdot \vec{\sigma}_{r}\right\| A_{i}\right\rangle \\
& M_{R}=\sum\left\langle A_{f}\left\|\left[h_{R G}\left(r_{-}\right) \mathcal{O}_{G T}+h_{R T}\left(r_{-}\right) \mathcal{O}_{T}\right]\right\| A_{i}\right\rangle
\end{aligned}
$$

Background

Stefanik 18’

- A comparison with LR symmetric model in traditional treatment where left- and right-handed neutrino are treated equally

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 \nu}\right]^{-1} } & =g_{A}^{4}\left|M_{G T}\right|^{2}\left\{C_{m m}\left(\frac{\left|m_{\beta \beta}\right|}{m_{e}}\right)^{2}+C_{m \lambda} \frac{\left|m_{\beta \beta}\right|}{m_{e}}\langle\lambda\rangle \cos \psi_{1}\right. \\
& \left.+C_{m \eta} \frac{\left|m_{\beta \beta}\right|}{m_{e}}\langle\eta\rangle \cos \psi_{2}+C_{\lambda \lambda}\langle\lambda\rangle^{2}+C_{\eta \eta}\langle\eta\rangle^{2}+C_{\lambda \eta}\langle\lambda\rangle\langle\eta\rangle \cos \left(\psi_{1}-\psi_{2}\right)\right\}
\end{aligned}
$$

- An comparison with SMEFT

$$
\begin{aligned}
\left(T_{1 / 2}^{0 \nu}\right)^{-1}=g_{A}^{4}\{ & G_{01}\left(\left|\mathcal{A}_{\nu}\right|^{2}+\left|\mathscr{X}_{R}\right|^{2}\right)-2\left(G_{01}-G_{04}\right) \operatorname{Re} \mathcal{A}_{\nu}^{*} \mathscr{X}_{R}+4 G_{02}\left|\mathcal{A}_{E}\right|^{2} \\
& +2 G_{04}\left[\left|\mathcal{A}_{m_{e}}\right|^{2}+\operatorname{Re}\left(\mathcal{A}_{m_{e}}^{*}\left(\mathcal{A}_{\nu}+\mathscr{H}_{R}\right)\right)\right] \\
& -2 G_{03} \operatorname{Re}\left[\left(\mathcal{A}_{\nu}+\not \mathscr{X}_{R}\right) \mathcal{A}_{E}^{*}+2 \mathcal{A}_{m_{e}} \mathcal{A}_{E}^{*}\right] \\
& \left.+G_{09}\left|\mathcal{A}_{M}\right|^{2}+G_{06} \operatorname{Re}\left[\left(\mathcal{A}_{\nu}-\mathcal{H}_{R}\right) \mathcal{A}_{M}^{*}\right]\right\} .
\end{aligned}
$$

Background

Cirigliano 17', Hyvarinen15', Barea 15', Horoi 18'

- NME correspondence in different references

NMEs	Ref. $[76,84,85]$	Ref. $[83]$	Ref. $[32]$
M_{F}	M_{F}	M_{F}	$M_{F, F \omega, F q}$
$M_{G T}^{A A}$	$M_{G T}^{A A}$	$M_{G T}^{A A}$	$M_{G T \omega, G T q}$
$M_{G T}^{A P}$	$M_{G T}^{A P}$	$M_{G T}^{A P}$	$4 \frac{m_{e}}{B} M_{G T \pi \nu}+\frac{1}{3} M_{G T 2 \pi}$
$M_{G T}^{P P}$	$M_{G T}^{P P}$	$M_{G T}^{P P}$	$-\frac{1}{6} M_{G T 2 \pi}$
$M_{G T}^{M M}$	$r_{M}^{2} M_{G T}^{M M}$	$M_{G T}^{M M}$	$r_{M} \frac{g_{M}}{2 g_{A} g_{V} R_{A} m_{N}} M_{R}=\frac{g_{M}^{2}}{6 g_{A}^{2} R_{A} m_{N}} M_{G T^{\prime}}$
$M_{T}^{A A}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
$M_{T}^{A P}$	$M_{T}^{A P}$	$M_{T}^{A P}$	$4 \frac{m_{e}}{B} M_{T \pi \nu}+\frac{1}{3} M_{T 2 \pi}$
$M_{T}^{P P}$	$M_{T}^{P P}$	$M_{T}^{P P}$	$-\frac{1}{6} M_{T 2 \pi}$
$M_{T}^{M M}$	$r_{M}^{2} M_{T}^{M M}$	$M_{T}^{M M}$	$-\frac{g_{M}^{2}}{12 g_{A}^{2} R_{A} m_{N}} M_{T}^{\prime}$
$M_{F, s d}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{F, s d}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{F, s d}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{F N}=\frac{m_{N}}{R_{A} m_{\pi}^{2}} M_{F}^{\prime}$
$M_{G T, s d}^{A A}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{A A}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{A A}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T N}=\frac{m_{N}}{R_{A} m_{\pi}^{2}} M_{G T}^{\prime}$
$M_{G T, s d}^{A P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{A P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{A P}$	$\frac{2}{3} M_{G T 1 \pi}$
$M_{G T, s d}^{P P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{P P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{G T, s d}^{P P}$	$\frac{1}{6}\left(M_{G T 2 \pi}-2 M_{G T 1 \pi}\right)$
$M_{T, s d}^{A P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{T, s d}^{A P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{T, s d}^{A P}$	$\frac{2}{3} M_{T 1 \pi}$
$M_{T, s d}^{P P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{T, s d}^{P P}$	$\frac{m_{e} m_{N}}{m_{\pi}^{2}} M_{T, s d}^{P P}$	$\frac{1}{6}\left(M_{T 2 \pi}-2 M_{T 1 \pi}\right)$

Background

- A more precise derivation of decay half-lives and angular correlations has also been done including short-range dim-9 operators beyond these approximations Deppisch 20'

$$
\frac{d^{2} \Gamma}{d E_{1} d \cos \theta}=C w\left(E_{1}\right)\left(a\left(E_{1}\right)+b\left(E_{1}\right) \cos \theta\right)
$$

- With

$$
\begin{aligned}
a\left(E_{1}\right)= & f_{11+}^{(0)}\left|\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I}+\epsilon_{\nu} \mathcal{M}_{\nu}\right|^{2}+f_{11+}^{(0)}\left|\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I}\right|^{2}+\frac{1}{16} f_{66}^{(0)}\left|\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I}\right|^{2} \\
& +f_{11-}^{(0)} \times 2 \operatorname{Re}\left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I}+\epsilon_{\nu} \mathcal{M}_{\nu}\right)\left(\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I}\right)^{*}\right] \\
& +\frac{1}{4} f_{16}^{(0)} \times 2 \operatorname{Re}\left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I}-\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I}+\epsilon_{\nu} \mathcal{M}_{\nu}\right)\left(\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I}\right)^{*}\right] \\
b\left(E_{1}\right)= & f_{11+}^{(1)}\left|\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I}+\epsilon_{\nu} \mathcal{M}_{\nu}\right|^{2}+f_{11+}^{(1)}\left|\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I}\right|^{2}+\frac{1}{16} f_{66}^{(1)}\left|\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I}\right|^{2}
\end{aligned}
$$

Background

- In above derivation, extra currents with their form factors are derived

$$
\begin{aligned}
& \langle p| \bar{u}\left(1 \pm \gamma_{5}\right) d|n\rangle=\bar{N} \tau^{+}\left[F_{S}\left(q^{2}\right) \pm F_{P^{\prime}}\left(q^{2}\right) \gamma_{5}\right] N^{\prime} \\
& \langle p| \bar{u} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) d|n\rangle=\bar{N} \tau^{+}\left[J^{\mu \nu} \pm \frac{i}{2} \epsilon^{\mu \nu \rho \sigma} J_{\rho \sigma}\right] N^{\prime}
\end{aligned}
$$

$$
J^{\mu \nu}=F_{T_{1}}\left(q^{2}\right) \sigma^{\mu \nu}+i \frac{F_{T_{2}}\left(q^{2}\right)}{m_{p}}\left(\gamma^{\mu} q^{\nu}-\gamma^{\nu} q^{\mu}\right)+\frac{F_{T_{3}}\left(q^{2}\right)}{m_{p}^{2}}\left(\sigma^{\mu \rho} q_{\rho} q^{\nu}-\sigma^{\nu \rho} q_{\rho} q^{\mu}\right)
$$

- We have much complicated structure for NMEs

$$
\begin{array}{rlr}
\mathcal{M}_{1}= & g_{S}^{2} \mathcal{M}_{F} \pm \frac{g_{P^{\prime}}^{2}}{12}\left(\mathcal{M}_{\mathrm{GT}}^{\prime P^{\prime} P^{\prime}}+\mathcal{M}_{T}^{\prime P^{\prime} P^{\prime}}\right) \quad \mathcal{M}_{4}=\mp i\left[g_{A} g_{T_{1}} \mathcal{M}_{\mathrm{GT}}^{A T_{1}}-\frac{g_{P} g_{T_{1}}}{12}\left(\mathcal{M}_{\mathrm{GT}}^{\prime P T_{1}}+\mathcal{M}_{T}^{\prime P T_{1}}\right)\right] \\
\mathcal{M}_{3}= & g_{V}^{2} \mathcal{M}_{F}+\frac{\left(g_{V}+g_{W}\right)^{2}}{12}\left(-2 \mathcal{M}_{\mathrm{GT}}^{\prime W W}+\mathcal{M}_{T}^{\prime W W}\right) \quad \mathcal{M}_{2}=-2 g_{T_{1}}^{2} \mathcal{M}_{\mathrm{GT}}^{T_{1} T_{1}} \\
& \mp\left[g_{A}^{2} \mathcal{M}_{\mathrm{GT}}^{A A}-\frac{g_{A} g_{P}}{6}\left(\mathcal{M}_{\mathrm{GT}}^{\prime A P}+\mathcal{M}_{T}^{\prime A P}\right) \quad \mathcal{M}_{5}=g_{V} g_{S} \mathcal{M}_{F} \pm\left[\frac{g_{A} g_{P^{\prime}}}{12}\left(\tilde{\mathcal{M}}_{\mathrm{GT}}^{A P^{\prime}}+\tilde{\mathcal{M}}_{T}^{A P^{\prime}}\right)\right.\right. \\
& \left.+\frac{g_{P}^{2}}{48}\left(\mathcal{M}_{\mathrm{GT}}^{\prime \prime P P}+\mathcal{M}_{T}^{\prime \prime P P}\right)\right] . & \left.-\frac{g_{P} g_{P^{\prime}}}{24}\left(\mathcal{M}_{\mathrm{GT}}^{q_{0} P P^{\prime}}+\mathcal{M}_{T}^{\prime q_{0} P P^{\prime}}\right)\right] .
\end{array}
$$

Approaches

- Modern nuclear structure calculations relay on our understanding of nuclear force and many-body correlations
- For the nuclear force used in many-body approaches:
- Effective nuclear force - derived from bare nucleon force and softened by certain methods
- Phenomenological force - starting with certain symmetries and the parameters are fitted by nuclear properties

Approaches

- Most traditional methods used in double beta decay calculations are based on phenomenological forces
- Shell Model (configuration interaction)
- DFT based on relativistic and non-relativistic mean-field
- GCM based on DFT
- QRPA based on DFT or phenomenological mean-field
- Geometric models without explicit inclusions of nuclear forces: pSU(3), IBM etc.

Results

- The light neutrino mass mechanism has been in last decade well investigated although the new LO terms haven't been included
- It is impossible to give a complete list
- SM: renormalization of operator; larger model space

Caurier 12', Horoi 13', Menendez 14', Iwata 16', Menendez 18', Coraggio 20'

- QRPA: isospin symmetry restoration

Mustonen 13', Simkovic13', Hyvarinen 15', Fang 18'

- IBM: ISR

Barea 13', Barea15'

- PHFB

Sahu 15', Rath 19', Wang 21'

- DFT+GCM: relativity

Vaquero 13', Song14', Yao 15', Song17', Jiao 17'

Results

- Compared to light neutrino mass mechanism, there are less on heavy neutrino mass
- SM: renormalization of operator; larger model space Horoi 13', Menendez 18'
- QRPA: isospin symmetry restoration

Hyvarinen 15', Fang 18'

- IBM: ISR

Barea15'

- PHFB

Rath 19'

- DFT+GCM: relativity

Song17'

Results

- Deviations from different methods

- Originating from various sources

Results

- Comparative studies between SM and EDF

Menendez 14'

- They come out with the conclusion, SM and EDF are similar at some level when seniority is 0 for SM and only spherical shape are assumed for EDF

Results

$$
\begin{gathered}
M^{0 \nu}=[3.0(3)][1.2(2)][0.97(3)][1.12(7)]=3.9(8) \\
M^{0 N}=[155(10)][1.65(25)][0.80(20)][1.13(13)]=232(80)
\end{gathered}
$$

- comparative studies between SM and QRPA and estimations of errors

Results

Horoi 13', Simkovic 17', Singh 19', Sarkar 20', Ahmed 20'

- Even less are for the traditional LR symmetric models

Results

Tomoda 88', Fang 21'

- If LR symmetric model dominates $0 v \beta \beta$ decay, the decay to 2^{+}may be faster than decay to 0^{+}or comparable

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{λ}	M_{η}	M_{6}	M_{7}	M_{η}^{\prime}
PHFB[14]	0.151	0.027	-0.002	-0.049	-0.004	0.002	0.061	0.074	0.042	0.001
Baseline	0.705	-0.253	-0.046	-0.153	-0.048	0.150	0.469	0.527	-1.270	1.519
$N_{\max }=5$	0.629	-0.208	-0.014	-0.124	-0.069	0.151	0.438	0.661	-1.369	1.688
$N_{\max }=7$	0.640	-0.256	-0.048	-0.145	-0.063	0.121	0.439	0.643	-1.251	1.564
w/o src	0.701	-0.234	-0.049	-0.154	-0.051	0.128	0.451	0.485	-1.182	1.410
Argonne src	0.705	-0.250	-0.046	-0.153	-0.048	0.149	0.467	0.519	-1.261	1.505
L.O.	0.749	-0.347	-0.051	-0.154	-0.041	0.228	0.540	0.823	-1.756	2.152
w/o $F\left(q^{2}\right)$	0.695	-0.241	-0.047	-0.154	-0.050	0.136	0.457	0.529	-1.272	1.521
Closure Energy	0.696	-0.267	-0.043	-0.144	-0.041	0.177	0.472	0.522	-1.247	1.493
$g_{p p}^{T=0}=0$	0.611	-0.169	-0.054	-0.161	-0.065	0.029	0.376	0.540	-1.240	1.496
$g_{p p}^{T=1}=0$	0.795	-0.246	-0.034	-0.156	-0.034	0.206	0.516	0.501	-1.437	1.665
$g_{A}=0.75$	0.695	-0.241	-0.047	-0.154	-0.050	0.008	0.317	0.529	-1.272	1.249

- Orders of magnitude larger with QRPA calculations

Results

Cirigliano 17’

- Not so many studies of NMEs for mechanism in SMEFT frame, but we are on the edge for the booming

Results

Horoi 18', Deppisch 20'

| Isotope | \mathcal{M}_{F} | $\mathcal{M}_{\mathrm{GT}}^{A A}$ | $\mathcal{M}_{\mathrm{GT}}^{A T_{1}}$ | $\mathcal{M}_{\mathrm{GT}}^{T_{\mathrm{G}} T_{1}}$ | $\mathcal{M}_{\mathrm{GT}}^{\prime, G W}$ | $\mathcal{M}_{T}^{\prime W W}$ | $\mathcal{M}_{\mathrm{GT}}^{\prime A P}$ | $\mathcal{M}_{T}^{\prime A P}$ | $\mathcal{M}_{\mathrm{GT}}^{\prime P T_{1}}$ | $\mathcal{M}_{T}^{\prime P T_{1}}$ | $\mathcal{M}_{\mathrm{GT}}^{\prime P^{\prime} P^{\prime}}$ | $\mathcal{M}_{T}^{\prime P^{\prime} P^{\prime}}$ | $\mathcal{M}_{\mathrm{GT}}^{\prime \prime P P}$ |
| :--- | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $\mathcal{M}_{T}^{\prime \prime P P}$

- IBM results for short range dim-9 contributions under SMEFT frame

Results

- Mechanism not included in current SMEFT frame- the majoron mechanisms

Rath16', Capedello 19'

Nuclei	g_{A}	$\bar{M}_{m_{v}}^{(\chi)}$		$\bar{M}_{\text {CR }}(\underline{ }$		$\begin{gathered} \bar{M}_{\mathrm{CR}}^{(\chi)} \\ {[16]} \end{gathered}$	$M_{\omega^{2}}^{(\chi)} \times 10^{3}$		$\begin{gathered} M_{\omega^{2}}^{(x)} \\ \times 10^{3 \pm 1} \\ {[16]} \end{gathered}$
		Case I	Case II	Case I	Case II		Case I	Case II	
${ }^{94} \mathrm{Zr}$	1.254	3.873 ± 0.373	4.071 ± 0.246	0.158 ± 0.015	0.165 ± 0.010		4.429 ± 0.560	4.500 ± 0.562	
	1.0	4.322 ± 0.421	4.550 ± 0.270	0.198 ± 0.018	0.207 ± 0.012		4.782 ± 0.557	4.860 ± 0.557	
${ }^{96} \mathrm{Zr}$	1.254	2.857 ± 0.264	3.021 ± 0.119	0.115 ± 0.010	0.121 ± 0.004		3.198 ± 0.240	3.256 ± 0.229	
	1.0	3.204 ± 0.307	3.393 ± 0.141	0.144 ± 0.013	0.152 ± 0.006		3.414 ± 0.299	3.478 ± 0.290	
${ }^{100} \mathrm{Mo}$	1.254	6.250 ± 0.638	6.575 ± 0.452	0.246 ± 0.024	0.258 ± 0.016	0.16	6.386 ± 0.709	6.499 ± 0.711	~ 1.0
	1.0	7.035 ± 0.746	7.410 ± 0.538	0.308 ± 0.029	0.324 ± 0.020		6.923 ± 0.851	7.047 ± 0.856	
${ }^{128} \mathrm{Te}$	1.254	3.612 ± 0.395	3.810 ± 0.286	0.130 ± 0.014	0.137 ± 0.010	0.14	3.732 ± 0.456	3.795 ± 0.457	~ 1.0
	1.0	4.088 ± 0.450	4.316 ± 0.321	0.163 ± 0.018	0.172 ± 0.013		4.161 ± 0.518	4.230 ± 0.519	
${ }^{130} \mathrm{Te}$	1.254	4.046 ± 0.497	4.254 ± 0.406	0.143 ± 0.016	0.151 ± 0.012	0.12	4.330 ± 0.892	4.395 ± 0.908	~ 1.0
	1.0	4.569 ± 0.568	4.808 ± 0.461	0.180 ± 0.020	0.189 ± 0.016		4.819 ± 1.003	4.890 ± 1.021	
${ }^{150} \mathrm{Nd}$	1.254	2.826 ± 0.430	2.957 ± 0.408	0.094 ± 0.014	0.099 ± 0.013	0.15	3.042 ± 0.496	3.081 ± 0.508	~ 1.0
	1.0	3.193 ± 0.492	3.345 ± 0.466	0.118 ± 0.017	0.124 ± 0.016		3.332 ± 0.572	3.375 ± 0.586	

$\left[T_{1 / 2}^{(0 \nu \chi)}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=\left|\left\langle g_{\alpha}\right\rangle\right|^{m} G_{\alpha}^{(\chi)}\left|M_{\alpha}^{(\chi)}\right|^{2}$

- However, not no much attention has been paid

Results

- Corrections to double beta decay operators
- Contributions from chiral two-body currents

Menendez 11', Engel 14', Wang 18'

- Modifications of operators in shell model

Coraggio 20'

NME from experiments

- Are there any observables which can be related to the NMEs?
- Early attempts are to relate the Fermi NME with double Fermi transition or coulomb excitations

$$
\quad M_{F}^{0 v} \approx-\frac{2}{e^{2}} \bar{\omega}_{\mathrm{IAS}}\left\langle 0_{f}\right| \hat{T}^{-}|\mathrm{IAS}\rangle\langle\operatorname{IAS}| \hat{T}^{-}\left|0_{i}\right\rangle
$$

Rodin 09'

IAS

NME from experiments

- Recently, the measurement of DGT for determinations of double beta decay matrix elements are proposed

- What they found in shell model calculations,

NMEs from experiments

- The idea of EM transitions from DIAS to ground states has been formulated with shell model recently

Romeo 21'

NME from experiments

- Above results has a similar nucleon pair structure as double beta decay

Rebeiro 20'

- Two nucleon removal amplitude constrained with charge changing (p, t) reactions

Conclusion

- New formalism of double beta decay based on SMEFT frame has been developed
- The requirements of NME calculations are urgent for new physics survey
- Deviations among traditional many-body approaches are large and we are trying to understand the reason
- There are also efforts of constraining the NMEs from experiment side

Thanks for your attention

