Nuclear matrix elements for neutrinoless double beta decay

Dong-Liang Fang Institute of Modern Physics, Chinese Academy of Sciences

Outline

- Background
- Theoretical approaches and results
- Attempts of measuring the NME
- Conclusions and Outlook

- The master formula for decay width $(0^+ -> 0^+)$: Cirigliano 18' $(T_{1/2}^{0\nu})^{-1} = g_A^4 \Big\{ G_{01} \left(|\mathcal{A}_{\nu}|^2 + |\mathcal{A}_R|^2 \right) - 2(G_{01} - G_{04}) \operatorname{Re} \mathcal{A}_{\nu}^* \mathcal{A}_R + 4G_{02} |\mathcal{A}_E|^2 + 2G_{04} \left[|\mathcal{A}_{m_e}|^2 + \operatorname{Re} \left(\mathcal{A}_{m_e}^* (\mathcal{A}_{\nu} + \mathcal{A}_R) \right) \right] -2G_{03} \operatorname{Re} \left[(\mathcal{A}_{\nu} + \mathcal{A}_R) \mathcal{A}_E^* + 2\mathcal{A}_{m_e} \mathcal{A}_E^* \right] + G_{09} |\mathcal{A}_M|^2 + G_{06} \operatorname{Re} \left[(\mathcal{A}_{\nu} - \mathcal{A}_R) \mathcal{A}_M^* \right] \Big\}.$
- Here A's are combinations of the ββ decay NMEs and LECs
- G's are the phase space factors and are trivial for numerical calculations

$$\mathcal{A}_{\nu} = \frac{m_{\beta\beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)} + \frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M} = \frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{M}^{(9)}$$
$$\mathcal{A}_{E} = \mathcal{M}_{E,L}^{(6)} + \mathcal{M}_{E,R}^{(6)} \quad \mathcal{A}_{m_{e}} = \mathcal{M}_{m_{e},L}^{(6)} + \mathcal{M}_{m_{e},R}^{(6)} \quad \mathcal{A}_{R} = \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{R}^{(9)}$$

 $\begin{array}{l} \text{M's here are the combinations of NMEs, for the neutrino} \\ \text{mass mechanism, we have MF, MGT and MT} \\ \mathcal{M}_{\nu}^{(3)} = -V_{ud}^2 \left(-\frac{1}{g_A^2} M_F + \mathcal{M}_{GT} + \mathcal{M}_T + 2 \frac{m_{\pi}^2 g_{\nu}^{NN}}{g_A^2} M_{F,sd} \right), \\ \mathcal{M}_{\nu}^{(9)} = -\frac{1}{2m_N^2} C_{\pi\pi \, \mathrm{L}}^{(9)} \left(\frac{1}{2} M_{GT,sd}^{AP} + M_{GT,sd}^{PP} + \frac{1}{2} M_{T,sd}^{AP} + M_{T,sd}^{PP} \right) \\ \quad + \frac{m_{\pi}^2}{2m_N^2} C_{\pi N \, \mathrm{L}}^{(9)} \left(M_{GT,sd}^{AP} + M_{T,sd}^{AP} \right) - \frac{2}{g_A^2} \frac{m_{\pi}^2}{m_N^2} C_{NN \, \mathrm{L}}^{(9)} M_{F,sd}, \\ (T_{1/2}^{0\nu})^{-1} = g_A^4 G_{01}(|A_{\nu}|^2 + |A_R|^2) \end{array} \right)$

$$\mathcal{A}_{\nu} = \frac{m_{\beta\beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)} + \frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M} = \frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{M}^{(9)}$$
$$\mathcal{A}_{E} = \mathcal{M}_{E,L}^{(6)} + \mathcal{M}_{E,R}^{(6)} \quad \mathcal{A}_{m_{e}} = \mathcal{M}_{m_{e},L}^{(6)} + \mathcal{M}_{m_{e},R}^{(6)} \quad \mathcal{A}_{R} = \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{R}^{(9)}$$

 $\begin{array}{l} \text{M's here are the combinations of NMEs, for the neutrino} \\ \text{mass mechanism, we have MF, MGT and MT} \\ \mathcal{M}_{\nu}^{(3)} = -V_{ud}^{2} \left(-\frac{1}{g_{A}^{2}} M_{F} + \mathcal{M}_{GT} + \mathcal{M}_{T} + 2 \frac{m_{\pi}^{2} g_{\nu}^{NN}}{g_{A}^{2}} M_{F,sd} \right), \\ \mathcal{M}_{\nu}^{(9)} = -\frac{1}{2m_{N}^{2}} C_{\pi\pi L}^{(9)} \left(\frac{1}{2} M_{GT,sd}^{AP} + M_{GT,sd}^{PP} + \frac{1}{2} M_{T,sd}^{AP} + M_{T,sd}^{PP} \right) \\ \quad + \frac{m_{\pi}^{2}}{2m_{N}^{2}} C_{\pi NL}^{(9)} \left(M_{GT,sd}^{AP} + M_{T,sd}^{AP} \right) - \frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{NNL}^{(9)} M_{F,sd}, \end{array} \right) \\ \mathcal{M}_{R}^{(9)} = \mathcal{M}_{\nu}^{(9)} |_{L \to R} \\ (T_{1/2}^{0\nu})^{-1} = g_{A}^{4} G_{01} (|A_{\nu}|^{2} + |A_{R}|^{2}) \end{array}$

$$\mathcal{A}_{\nu} = \frac{m_{\beta\beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)} + \frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M} = \frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{M}^{(9)}$$
$$\mathcal{A}_{E} = \mathcal{M}_{E,L}^{(6)} + \mathcal{M}_{E,R}^{(6)} \quad \mathcal{A}_{m_{e}} = \mathcal{M}_{m_{e},L}^{(6)} + \mathcal{M}_{m_{e},R}^{(6)} \quad \mathcal{A}_{R} = \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{R}^{(9)}$$

• M's here are the combinations of NMEs, for the neutrino mass mechanism, we have M_F, M_{GT} and M_T $\mathcal{M}_{\nu}^{(3)} = -V_{ud}^{2} \left(-\frac{1}{g_{A}^{2}} M_{F} + \mathcal{M}_{GT} + \mathcal{M}_{T} + 2 \frac{m_{\pi}^{2} g_{\nu}^{NN}}{g_{A}^{2}} M_{F,sd} \right),$ $\mathcal{M}_{\nu}^{(9)} = -\frac{1}{2m_{N}^{2}} C_{\pi\pi L}^{(9)} \left(\frac{1}{2} M_{GT,sd}^{AP} + M_{GT,sd}^{PP} + \frac{1}{2} M_{T,sd}^{AP} + M_{T,sd}^{PP} \right)$ $+ \frac{m_{\pi}^{2}}{2m_{N}^{2}} C_{\pi N L}^{(9)} \left(M_{GT,sd}^{AP} + M_{T,sd}^{AP} \right) - \frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{N N L}^{(9)} M_{F,sd}, \qquad \mathcal{M}_{R}^{(9)} = \mathcal{M}_{\nu}^{(9)} |_{L \to R}$ $(T_{1/2}^{0\nu})^{-1} = g_{A}^{4} G_{01} (|A_{\nu}|^{2} + |A_{R}|^{2})$

$$\mathcal{A}_{\nu} = \frac{m_{\beta\beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)} + \frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{\nu}^{(9)} \quad \mathcal{A}_{M} = \frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)} + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{M}^{(9)}$$
$$\mathcal{A}_{E} = \mathcal{M}_{E,L}^{(6)} + \mathcal{M}_{E,R}^{(6)} \quad \mathcal{A}_{m_{e}} = \mathcal{M}_{m_{e},L}^{(6)} + \mathcal{M}_{m_{e},R}^{(6)} \quad \mathcal{A}_{R} = \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{R}^{(9)}$$

• M's here are the combinations of NMEs, for the neutrino mass mechanism, we have M_F, M_{GT} and M_T $\mathcal{M}_{\nu}^{(3)} = -V_{ud}^{2} \left(-\frac{1}{g_{A}^{2}} M_{F} + \mathcal{M}_{GT} + \mathcal{M}_{T} + 2 \frac{m_{\pi}^{2} g_{\nu}^{NN}}{g_{A}^{2}} M_{F,sd} \right),$ $\mathcal{M}_{\nu}^{(9)} = -\frac{1}{2m_{N}^{2}} C_{\pi\pi L}^{(9)} \left(\frac{1}{2} M_{GT,sd}^{AP} + M_{GT,sd}^{PP} + \frac{1}{2} M_{T,sd}^{AP} + M_{T,sd}^{PP} \right)$ $+ \frac{m_{\pi}^{2}}{2m_{N}^{2}} C_{\pi N L}^{(9)} \left(M_{GT,sd}^{AP} + M_{T,sd}^{AP} \right) - \frac{2}{g_{A}^{2}} \frac{m_{\pi}^{2}}{m_{N}^{2}} C_{NN L}^{(9)} M_{F,sd}, \qquad \mathcal{M}_{R}^{(9)} = \mathcal{M}_{\nu}^{(9)} |_{L \to R}$ $(T_{1/2}^{0\nu})^{-1} = g_{A}^{4} G_{01} (|A_{\nu}|^{2} + |A_{R}|^{2})$

• M_F , M_{GT} and M_T are the long range Fermi, Gamow-Teller and tensor part we are familiar with

 $\mathcal{M}_{GT} = M_{GT}^{AA} + M_{GT}^{AP} + M_{GT}^{PP} + M_{GT}^{MM} \qquad \mathcal{M}_{T} = M_{T}^{AP} + M_{T}^{PP} + M_{T}^{MM}$

• Where
$$M_I^K = \langle f | \frac{2R}{\pi} \int h_I^K(q) j_I(qr) \frac{qdq}{q + E_N} \mathcal{O}_I | i \rangle$$

- Short range NMEs are similar $M_{I,sd}^{K} = \langle f | \frac{2R}{\pi} \int h_{I}^{K}(q) j_{I}(qr) \frac{q^{2} dq}{q + E_{N}} \mathcal{O}_{I} | i \rangle$
- All these *M*'s can be expressed in 15 NMEs

- A comparison with LR symmetric model in traditional treatment where left- and right-handed neutrino are treated equally (short range mechanism neglected) $[T_{1/2}^{0\nu}]^{-1} = g_A^4 |M_{GT}|^2 \Big\{ C_{mm} \Big(\frac{|m_{\beta\beta}|}{m_e} \Big)^2 + C_{m\lambda} \frac{|m_{\beta\beta}|}{m_e} \langle \lambda \rangle \cos \psi_1 \\ + C_{m\eta} \frac{|m_{\beta\beta}|}{m_e} \langle \eta \rangle \cos \psi_2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle \cos (\psi_1 - \psi_2) \Big\}$
- Where

$$\begin{split} C_{mm} &= (1 - \chi_F + \chi_T)^2 G_{01}, \\ C_{m\lambda} &= -(1 - \chi_F + \chi_T) [\chi_{2-} G_{03} - \chi_{1+} G_{04}], \\ C_{m\eta} &= (1 - \chi_F + \chi_T) [\chi_{2+} G_{03} - \chi_{1-} G_{04}], \\ - \chi_P G_{05} + \chi_R G_{06}], \\ C_{\lambda\lambda} &= \chi_{2-}^2 G_{02} + \frac{1}{9} \chi_{1+}^2 G_{011} - \frac{2}{9} \chi_{1+} \chi_{2-} G_{010}, \end{split}$$

The rich structures for these NMEs are simulated

$$\chi_{1\pm} = \chi_{qGT} - 6\chi_{qT} \pm 3\chi_{qF}, \quad \chi_{2\pm} = \chi_{GT\omega} + \chi_{T\omega} \pm \chi_{F\omega} - \frac{1}{9}\chi_{1\mp}.$$

 These are terms from the helicity exchange terms in neutrino propagator

$$M_{\omega F,\omega GT,\omega T} = \sum \langle A_f \| h_{\omega F,\omega GT,\omega T}(r_-) \mathcal{O}_{F,GT,T} \| A_i \rangle$$
$$M_{qF,qGT,qT} = \sum \langle A_f \| h_{qF,qGT,qT}(r_-) \mathcal{O}_{F,GT,T} \| A_i \rangle$$

And also time-space components and recoil terms

$$M_P = \sum i \langle A_f \| h_P(r_-) \tau_r^+ \tau_s^+ \frac{(\mathbf{r}_- \times \mathbf{r}_+)}{R^2} \cdot \vec{\sigma}_r \| A_i \rangle$$
$$M_R = \sum \langle A_f \| [h_{RG}(r_-) \mathcal{O}_{GT} + h_{RT}(r_-) \mathcal{O}_T] \| A_i \rangle$$

 A comparison with LR symmetric model in traditional treatment where left- and right-handed neutrino are treated equally

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = g_A^4 |M_{GT}|^2 \left\{ C_{mm} \left(\frac{|m_{\beta\beta}|}{m_e} \right)^2 + C_{m\lambda} \frac{|m_{\beta\beta}|}{m_e} \langle \lambda \rangle \cos \psi_1 + C_{m\eta} \frac{|m_{\beta\beta}|}{m_e} \langle \eta \rangle \cos \psi_2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle \cos (\psi_1 - \psi_2) \right\}$$

An comparison with SMEFT

$$\left(T_{1/2}^{0\nu} \right)^{-1} = g_A^4 \left\{ G_{01} \left(|\mathcal{A}_{\nu}|^2 + |\mathcal{A}_R|^2 \right) - 2(G_{01} - G_{04}) \operatorname{Re} \mathcal{A}_{\nu}^* \mathcal{A}_R + 4G_{02} |\mathcal{A}_E|^2 \right. \\ \left. + 2G_{04} \left[|\mathcal{A}_{m_e}|^2 + \operatorname{Re} \left(\mathcal{A}_{m_e}^* (\mathcal{A}_{\nu} + \mathcal{A}_R) \right) \right] \right. \\ \left. - 2G_{03} \operatorname{Re} \left[(\mathcal{A}_{\nu} + \mathcal{A}_R) \mathcal{A}_E^* + 2\mathcal{A}_{m_e} \mathcal{A}_E^* \right] \right. \\ \left. + G_{09} |\mathcal{A}_M|^2 + G_{06} \operatorname{Re} \left[(\mathcal{A}_{\nu} - \mathcal{A}_R) \mathcal{A}_M^* \right] \right\}.$$

Cirigliano 17', Hyvarinen15', Barea 15', Horoi 18'
NME correspondence in different references

NMEs	Ref. [76, 84, 85]	Ref. [83]	Ref. [32]
M_F	M_F	M_F	$M_{F,F\omega,Fq}$
M_{GT}^{AA}	M_{GT}^{AA}	M_{GT}^{AA}	$M_{GT\omega,GTq}$
M_{GT}^{AP}	M_{GT}^{AP}	M_{GT}^{AP}	$4\frac{m_e}{B}M_{GT\pi\nu} + \frac{1}{3}M_{GT2\pi}$
M_{GT}^{PP}	M_{GT}^{PP}	M_{GT}^{PP}	$-\frac{1}{6}M_{GT2\pi}$
M_{GT}^{MM}	$r_M^2 M_{GT}^{MM}$	M_{GT}^{MM}	$r_M \frac{g_M}{2g_A g_V R_A m_N} M_R = \frac{g_M^2}{6g_A^2 R_A m_N} M_{GT'}$
M_T^{AA}	×	×	×
M_T^{AP}	M_T^{AP}	M_T^{AP}	$4\frac{m_e}{B}M_{T\pi\nu} + \frac{1}{3}M_{T2\pi}$
M_T^{PP}	M_T^{PP}	M_T^{PP}	$-\frac{1}{6}M_{T2\pi}$
M_T^{MM}	$r_M^2 M_T^{MM}$	M_T^{MM}	$-rac{g_M^2}{12g_A^2R_Am_N}M_T^\prime$
$M_{F,sd}$	$rac{m_e m_N}{m_\pi^2} M_{F,sd}$	$\frac{m_e m_N}{m_\pi^2} M_{F,sd}$	$\frac{m_e m_N}{m_\pi^2} M_{FN} = \frac{m_N}{R_A m_\pi^2} M_F'$
$M_{GT,sd}^{AA}$	$\frac{m_e m_N}{m_\pi^2} M_{GT,sd}^{AA}$	$\frac{m_e m_N}{m_\pi^2} M_{GT,sd}^{AA}$	$\frac{m_e m_N}{m_\pi^2} M_{GTN} = \frac{m_N}{R_A m_\pi^2} M'_{GT}$
$M^{AP}_{GT,sd}$	$\frac{m_e m_N}{m_\pi^2} M^{AP}_{GT,sd}$	$\frac{m_e m_N}{m_\pi^2} M^{AP}_{GT,sd}$	$\frac{2}{3}M_{GT1\pi}$
$M_{GT,sd}^{PP}$	$\frac{m_e m_N}{m_\pi^2} M_{GT,sd}^{PP}$	$\frac{m_e m_N}{m_\pi^2} M_{GT,sd}^{PP}$	$\frac{1}{6}(M_{GT2\pi} - 2M_{GT1\pi})$
$M_{T,sd}^{AP}$	$rac{m_e m_N}{m_\pi^2} M_{T,sd}^{AP}$	$\frac{m_e m_N}{m_\pi^2} M_{T,sd}^{AP}$	$\frac{2}{3}M_{T1\pi}$
$M_{T,sd}^{PP}$	$\frac{m_e m_N}{m_\pi^2} M_{T,sd}^{PP}$	$\frac{m_e m_N}{m_\pi^2} M_{T,sd}^{PP}$	$\frac{1}{6}(M_{T2\pi} - 2M_{T1\pi})$

 A more precise derivation of decay half-lives and angular correlations has also been done including short-range dim-9 operators beyond these approximations Deppisch 20'

$$\frac{d^2\Gamma}{dE_1 d\cos\theta} = Cw(E_1)(a(E_1) + b(E_1)\cos\theta)$$

• With
$$a(E_{1}) = f_{11+}^{(0)} \left| \sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right|^{2} + f_{11+}^{(0)} \left| \sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right|^{2} + \frac{1}{16} f_{66}^{(0)} \left| \sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right|^{2} + f_{11-}^{(0)} \times 2 \operatorname{Re} \left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right)^{*} \right] + \frac{1}{4} f_{16}^{(0)} \times 2 \operatorname{Re} \left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} - \sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right)^{*} \right] \\ b(E_{1}) = f_{11+}^{(1)} \left| \sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right|^{2} + f_{11+}^{(1)} \left| \sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right|^{2} + \frac{1}{16} f_{66}^{(1)} \left| \sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right|^{2}$$

In above derivation, extra currents with their form factors are derived $\langle p | \bar{u}(1 \pm \gamma_5) d | n \rangle = \bar{N} \tau^+ [F_S(q^2) \pm F_{P'}(q^2)\gamma_5] N'$ $\langle p | \bar{u} \sigma^{\mu\nu}(1 \pm \gamma_5) d | n \rangle = \bar{N} \tau^+ \left[J^{\mu\nu} \pm \frac{i}{2} \epsilon^{\mu\nu\rho\sigma} J_{\rho\sigma} \right] N'$ $J^{\mu\nu} = F_{T_1}(q^2) \sigma^{\mu\nu} + i \frac{F_{T_2}(q^2)}{m_p} (\gamma^{\mu}q^{\nu} - \gamma^{\nu}q^{\mu}) + \frac{F_{T_3}(q^2)}{m_p^2} (\sigma^{\mu\rho}q_{\rho}q^{\nu} - \sigma^{\nu\rho}q_{\rho}q^{\mu}).$ We have much complicated structure for NMEs

$$\begin{split} \mathcal{M}_{1} &= g_{S}^{2} \mathcal{M}_{F} \pm \frac{g_{P'}^{2}}{12} \left(\mathcal{M}_{\text{GT}}^{\prime P'P'} + \mathcal{M}_{T}^{\prime P'P'} \right) \qquad \mathcal{M}_{4} = \mp i \left[g_{A} g_{T_{1}} \mathcal{M}_{\text{GT}}^{AT_{1}} - \frac{g_{P} g_{T_{1}}}{12} \left(\mathcal{M}_{\text{GT}}^{\prime PT_{1}} + \mathcal{M}_{T}^{\prime PT_{1}} \right) \right] \\ \mathcal{M}_{3} &= g_{V}^{2} \mathcal{M}_{F} + \frac{(g_{V} + g_{W})^{2}}{12} \left(-2 \mathcal{M}_{\text{GT}}^{\prime WW} + \mathcal{M}_{T}^{\prime WW} \right) \qquad \mathcal{M}_{2} = -2 g_{T_{1}}^{2} \mathcal{M}_{\text{GT}}^{T_{1}T_{1}} \\ &\mp \left[g_{A}^{2} \mathcal{M}_{\text{GT}}^{AA} - \frac{g_{A} g_{P}}{6} \left(\mathcal{M}_{\text{GT}}^{\prime AP} + \mathcal{M}_{T}^{\prime AP} \right) \right] \qquad \mathcal{M}_{5} = g_{V} g_{S} \mathcal{M}_{F} \pm \left[\frac{g_{A} g_{P'}}{12} \left(\tilde{\mathcal{M}}_{\text{GT}}^{AP'} + \tilde{\mathcal{M}}_{T}^{AP'} \right) \right] \\ &+ \frac{g_{P}^{2}}{48} \left(\mathcal{M}_{\text{GT}}^{\prime \prime PP} + \mathcal{M}_{T}^{\prime \prime PP} \right) \right]. \qquad - \frac{g_{P} g_{P'}}{24} \left(\mathcal{M}_{\text{GT}}^{\prime q_{0} PP'} + \mathcal{M}_{T}^{\prime q_{0} PP'} \right) \right]. \end{split}$$

Approaches

- Modern nuclear structure calculations relay on our understanding of nuclear force and many-body correlations
- For the nuclear force used in many-body approaches:
 - Effective nuclear force derived from bare nucleon force and softened by certain methods
 - Phenomenological force starting with certain symmetries and the parameters are fitted by nuclear properties

Approaches

- Most traditional methods used in double beta decay calculations are based on phenomenological forces
 - Shell Model (configuration interaction)
 - DFT based on relativistic and non-relativistic mean-field
 - GCM based on DFT
 - QRPA based on DFT or phenomenological mean-field
- Geometric models without explicit inclusions of nuclear forces: pSU(3), IBM etc.

- The light neutrino mass mechanism has been in last decade well investigated although the new LO terms haven't been included
- It is impossible to give a complete list
 - SM: renormalization of operator; larger model space

Caurier 12', Horoi 13', Menendez 14', Iwata 16', Menendez 18', Coraggio 20'

QRPA: isospin symmetry restoration

Mustonen 13', Simkovic13', Hyvarinen 15', Fang 18'

• IBM: ISR

Barea 13', Barea15'

• PHFB

Sahu 15', Rath 19', Wang 21'

• DFT+GCM: relativity

Vaquero 13', Song14', Yao 15', Song17', Jiao 17'

- Compared to light neutrino mass mechanism, there are less on heavy neutrino mass
 - SM: renormalization of operator; larger model space Horoi 13', Menendez 18'
 - QRPA: isospin symmetry restoration

Hyvarinen 15', Fang 18'

• IBM: ISR

Barea15'

• PHFB

Rath 19'

• DFT+GCM: relativity

Song17'

Deviations from different methods

Song 17'

Originating from various sources

Comparative studies between SM and EDF
 Menendez 14'

 They come out with the conclusion, SM and EDF are similar at some level when seniority is 0 for SM and only spherical shape are assumed for EDF

model

Brown 15' $M^{0\nu} = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8)$ $M^{0N} = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80)$ ⁷⁶Ge ⁷⁶Ge ⁷⁶Ge QRPA ([29]) experiment QRPA ([29]) QRPA (21 orbit) QRPA (21 orbit) QRPA (21 orbit) QRPA (fpg) QRPA (fpg) QRPA (fpg) QRPA (jj44) QRPA (jj44) QRPA (jj44) CI (jj44) CI (jj44) CI (jj44) IBM (jj44 IBM (jj44) 0.0 0.2 0.4 40 0.6 2 10 20 30 6 0 50 4 0 $M^{2v}(GT)$ (MeV⁻¹) M^{0v}(GT–light) M^{0v}(GT-heavy)/10

 comparative studies between SM and QRPA and estimations of errors

Horoi 13', Simkovic 17', Singh 19', Sarkar 20', Ahmed 20'
Even less are for the traditional LR symmetric models

NTMEs	94	Zr ⁹⁶	Zr ¹⁰⁰ M	o ¹¹⁰ Pd	$^{128}\mathrm{Te}$	$^{130}\mathrm{Te}$	$^{150}\mathrm{Nd}$
$\overline{M}_{\omega F}$	0.5	69 0.4	43 1.00	4 1.102	0.587	0.642	0.456
$\Delta \overline{M}_{\omega F}$	0.0	66 0.0	50 0.13	0 0.150	0.061	0.081	0.071
\overline{M}_{qF}	0.6	27 0.4	70 1.11	5 1.259	0.699	0.779	0.567
$\Delta \overline{M}_{qF}$	0.0	58 0.0	55 0.15	6 0.185	0.065	0.114	0.094
$\overline{M}_{\omega GT}$	-3.1	19 -2.3	03 -4.98	5 -5.618	-2.849	-3.140	-2.134
$\Delta \overline{M}_{\omega GT}$	0.3	12 0.2	30 0.51	6 0.596	0.335	0.360	0.324
\overline{M}_{qGT}	-3.8	41 -2.7	99 -6.08	1 -7.068	-3.541	-3.969	-2.819
$\Delta \overline{M}_{qGT}$	0.3	18 0.1	83 0.48	3 0.591	0.325	0.455	0.398
\overline{M}_{qT}	0.0	21 0.0	50 0.05	0 0.065	0.189	0.084	0.033
$\Delta \overline{M}_{qT}$	0.0	65 0.0	24 0.06	0.073	0.015	0.005	0.011
\overline{M}_P	2.3	82 2.2	96 3.96	6 4.731	1.091	1.474	0.260
$\Delta \overline{M}_P$	0.2	07 0.1	21 0.24	5 0.241	0.156	0.073	0.106
\overline{M}_R	-2.2	74 -1.8	74 -3.83	2 -4.474	-2.541	-2.686	-1.801
			19 1 00	7 1 070	0 750		
ΔM_R	0.6	64 0.5	42 1.09	1.279	0.753	0.758	0.545
$\frac{\Delta M_R}{\text{NTMEs}}$	0.6 with $g_A=1.2$	64 0.5 254 in pn	42 1.09 QRPA by	$\frac{7}{(a)} \text{ Muto } a$	0.753 et al. ³⁵ at	0.758 nd (b) Šir	$\frac{0.545}{\text{mkovic }et \ al.}^{36}$
$\frac{\Delta M_R}{\text{NTMEs }}$	0.6 with $g_A = 1.2$ (a)	64 0.5 254 in pn	42 1.09 QRPA by -1.21	(a) Muto a	0.753 et al. ³⁵ an -1.047	0.758 nd (b) Šir -0.867	0.545 nkovic <i>et al.</i> ³⁶ -1.630
$\frac{\Delta M_R}{\text{NTMEs}}$ $M_{\omega F}$	0.6 with $g_A = 1.2$ (a) (b)	64 0.5 254 in pn -1.1	42 1.09 QRPA by -1.21 17 -2.07	$\begin{array}{c} 1.279 \\ \hline (a) Muto \\ 8 \\ 6 -2.015 \end{array}$	0.753 et al. ³⁵ an -1.047	0.758 nd (b) Šir -0.867 -1.410	0.545 nkovic <i>et al.</i> ³⁶ -1.630
$\frac{\Delta M_R}{\text{NTMEs v}}$ $M_{\omega F}$ M_{qF}	0.6 with $g_A = 1.2$ (a) (b) (a)	64 0.5 254 in pn -1.1	42 1.09 QRPA by -1.21 17 -2.07 -1.16	(a) Muto (a) 8 6 -2.015 1	0.753 et al. ³⁵ an -1.047 -1.054	0.758 nd (b) Šir -0.867 -1.410 -0.860	0.545 nkovic et al.36 -1.630 -1.592
ΔM_R NTMEs v $M_{\omega F}$ M_{qF}	0.6 with $g_A = 1.2$ (a) (b) (a) (b) (b)	64 0.5 254 in pn -1.1 -0.8	$\begin{array}{r} 42 & 1.09 \\ \hline \\ QRPA by \\ \hline & -1.212 \\ 17 & -2.076 \\ & -1.16 \\ 04 & -1.586 \end{array}$	$\begin{array}{c} 1.279 \\ \hline (a) Muto \\ 8 \\ 6 \\ -2.015 \\ 1 \\ 8 \\ -1.565 \end{array}$	0.753 et al. ³⁵ and -1.047 -1.054	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995	0.545 nkovic <i>et al.</i> ³⁶ -1.630 -1.592
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$	0.6 with $g_A = 1.2$ (a) (b) (a) (b) (a) (b) (a)	64 0.5 254 in pn -1.1 -0.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7 & 1.279 \\ \hline (a) Muto \\ 8 \\ 6 & -2.015 \\ 1 \\ 8 & -1.565 \\ 0 \\ \end{array}$	$ \begin{array}{r} 0.753 \\ \underline{et \ al.}^{35} \ an \\ -1.047 \\ -1.054 \\ 3.011 \end{array} $	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995 2.442	0.545 nkovic et al.36 -1.630 -1.592 4.206
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$	$ \begin{array}{c} 0.6 \\ \hline \text{with } g_A = 1.2 \\ \hline (a) \\ (b) \\ (a) \\ (b) \\ (a) \\ (b) \end{array} $	64 0.5 254 in pn -1.1 -0.8 2.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 7 & 1.279 \\ \hline (a) & Muto & a \\ 8 \\ 6 & -2.015 \\ 1 \\ 8 & -1.565 \\ 0 \\ 9 & 4.436 \\ \end{array}$	$ \begin{array}{r} 0.753 \\ \hline et al.^{35} a \\ -1.047 \\ -1.054 \\ 3.011 \end{array} $	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995 2.442 3.091	0.545 nkovic et al.36 -1.630 -1.592 4.206
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$ M_{qGT}	$ \begin{array}{c} 0.6 \\ \hline \text{with } g_A = 1.2 \\ \hline (a) \\ (b) \\ (b) \\ (a) \\ (b) \\ (b) \\ (b) \\ (b) \\ (b) \\ (c) \\ (c)$	64 0.5 254 in pn -1.1 -0.8 2.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \hline & 1.279 \\ \hline (a) & \text{Muto} \\ \hline & \\ \hline \\ \hline$	$ \begin{array}{r} 0.753 \\ \underline{et \ al.}^{35} \ an \\ -1.047 \\ -1.054 \\ 3.011 \\ 1.999 \end{array} $	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995 2.442 3.091 1.526	0.545 1.000
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$ M_{qGT}	$ \begin{array}{c} 0.6 \\ \hline \text{with } g_A = 1.2 \\ \hline (a) \\ (b) \\ (a) \\ (b) \\ (a) \\ (b) \\ (a) \\ (b) \\ (b) \\ (b) \\ (c) \\ (c)$	64 0.5 254 in pn -1.1 -0.8 2.0 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} \hline 1.279 \\ \hline (a) & \text{Muto} \\ \hline 8 \\ \hline 6 \\ \hline 6 \\ \hline -2.015 \\ \hline 1 \\ \hline 8 \\ \hline -1.565 \\ \hline 0 \\ \hline 9 \\ \hline 4.436 \\ \hline 5 \\ \hline 9 \\ \hline 2.878 \\ \hline \end{array}$	$ \begin{array}{r} 0.753 \\ \underline{et \ al.}^{35} \ an \\ -1.047 \\ -1.054 \\ 3.011 \\ 1.999 \\ \end{array} $	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995 2.442 3.091 1.526 1.746	$ \begin{array}{r} 0.545 \\ \text{nkovic } et \ al.^{36} \\ -1.630 \\ -1.592 \\ 4.206 \\ 2.485 \\ \end{array} $
ΔM_R $NTMEs$ $M_{\omega F}$ M_{qF} $M_{\omega GT}$ M_{qGT} M_{qT}	$ \begin{array}{c} 0.6 \\ \hline with g_A = 1.2 \\ \hline (a) \\ (b) \\ (b) \\ (a) \\ (b) \\ (b) \\ (b) \\ (c) \\ ($	64 0.5 254 in pn -1.1 -0.8 2.0 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 7 & 1.279 \\ \hline (a) & Muto & a \\ 8 \\ 6 & -2.015 \\ 1 \\ 8 & -1.565 \\ 0 \\ 9 & 4.436 \\ 5 \\ 9 & 2.878 \\ 3 \\ \end{array}$	$ \begin{array}{r} 0.753 \\ \hline et al.^{35} a \\ -1.047 \\ -1.054 \\ 3.011 \\ 1.999 \\ -0.583 \end{array} $	0.758 nd (b) Šir -0.867 -1.410 -0.860 -0.995 2.442 3.091 1.526 1.746 -0.574	$ \begin{array}{r} 0.545 \\ \text{nkovic } et \ al.^{36} \\ -1.630 \\ -1.592 \\ 4.206 \\ 2.485 \\ -1.148 \\ \end{array} $
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$ M_{qGT} M_{qT}	$ \begin{array}{c} 0.6 \\ \hline \text{with } g_A = 1.2 \\ \hline (a) \\ (b) \\ (b) \\ (a) \\ (b) \\ (b) \\ (b) \\ (c) \\ (c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 7 & 1.279 \\ \hline (a) & Muto & a \\ \hline 8 & -2.015 \\ 1 & \\ 8 & -1.565 \\ 0 & \\ 9 & 4.436 \\ \hline 9 & 2.878 \\ 3 & \\ 9 & -0.281 \\ \end{array}$	$ \begin{array}{r} 0.753 \\ \underline{et \ al.}^{35} \ an \\ -1.047 \\ -1.054 \\ 3.011 \\ 1.999 \\ -0.583 \end{array} $	$\begin{array}{r} 0.758\\ \hline 0.758\\ \hline 0.758\\ \hline 0.867\\ -1.410\\ -0.860\\ -0.995\\ 2.442\\ 3.091\\ 1.526\\ 1.746\\ -0.574\\ -0.252\\ \end{array}$	$ \begin{array}{r} 0.545 \\ \underline{ nkovic \ et \ al.}^{36} \\ -1.630 \\ -1.592 \\ 4.206 \\ 2.485 \\ -1.148 \\ \end{array} $
ΔM_R NTMEs v $M_{\omega F}$ M_{qF} $M_{\omega GT}$ M_{qGT} M_{qT} M_P	$ \begin{array}{c} 0.6 \\ \hline \text{with } g_A = 1.2 \\ \hline (a) \\ (b) \\ \\ (b) \\ (b) \\ (c) \\ (c)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 7 & 1.279 \\ \hline (a) & Muto & a \\ \hline 8 & -2.015 \\ 1 & & \\ 8 & -1.565 \\ 0 & & \\ 9 & 4.436 \\ \hline 9 & 2.878 \\ 3 & & \\ 9 & -0.281 \\ 2 & & \\ \end{array}$	$ \begin{array}{r} 0.753 \\ \underline{et \ al.}^{35} \ an \\ -1.047 \\ -1.054 \\ 3.011 \\ 1.999 \\ -0.583 \\ -0.483 \end{array} $	$\begin{array}{r} 0.758\\ \hline 0.758\\ \hline 0.758\\ \hline 0.867\\ -1.410\\ -0.860\\ -0.995\\ 2.442\\ 3.091\\ 1.526\\ 1.746\\ -0.574\\ -0.252\\ -0.387\\ \end{array}$	$ \begin{array}{r} 0.545 \\ \text{nkovic } et \ al.^{36} \\ -1.630 \\ -1.592 \\ 4.206 \\ 2.485 \\ -1.148 \\ 0.998 \\ \end{array} $

 If LR symmetric model dominates 0vββ decay, the decay to 2+ may be faster than decay to 0+ or comparable

	M_1	M_2	M_3	M_4	M_5	M_{λ}	M_{η}	M_6	M_7	M'_{η}
PHFB[14]	0.151	0.027	-0.002	-0.049	-0.004	0.002	0.061	0.074	0.042	0.001
Baseline	0.705	-0.253	-0.046	-0.153	-0.048	0.150	0.469	0.527	-1.270	1.519
$N_{max} = 5$	0.629	-0.208	-0.014	-0.124	-0.069	0.151	0.438	0.661	-1.369	1.688
$N_{max} = 7$	0.640	-0.256	-0.048	-0.145	-0.063	0.121	0.439	0.643	-1.251	1.564
w/o src	0.701	-0.234	-0.049	-0.154	-0.051	0.128	0.451	0.485	-1.182	1.410
Argonne src	0.705	-0.250	-0.046	-0.153	-0.048	0.149	0.467	0.519	-1.261	1.505
L.O.	0.749	-0.347	-0.051	-0.154	-0.041	0.228	0.540	0.823	-1.756	2.152
w/o $F(q^2)$	0.695	-0.241	-0.047	-0.154	-0.050	0.136	0.457	0.529	-1.272	1.521
Closure Energy	0.696	-0.267	-0.043	-0.144	-0.041	0.177	0.472	0.522	-1.247	1.493
$g_{pp}^{T=0} = 0$	0.611	-0.169	-0.054	-0.161	-0.065	0.029	0.376	0.540	-1.240	1.496
$g_{pp}^{\overline{T}=1} = 0$	0.795	-0.246	-0.034	-0.156	-0.034	0.206	0.516	0.501	-1.437	1.665
$g_A = 0.75$	0.695	-0.241	-0.047	-0.154	-0.050	0.008	0.317	0.529	-1.272	1.249

Orders of magnitude larger with QRPA calculations

 Not so many studies of NMEs for mechanism in SMEFT frame, but we are on the edge for the booming

Horoi 18', Deppisch 20'

Isotope	\mathcal{M}_F	$\mathcal{M}_{ ext{GT}}^{AA}$	$\mathcal{M}_{ ext{GT}}^{AT_1}$	$\mathcal{M}_{ ext{GT}}^{T_1T_1}$	$\mathcal{M}_{\mathrm{GT}}^{\prime WW}$	$\mathcal{M}_T'^{WW}$	$\mathcal{M}_{\mathrm{GT}}^{\prime AP}$	$\mathcal{M}_T^{\prime AP}$	$\mathcal{M}_{\mathrm{GT}}^{\prime PT_1}$	$\mathcal{M}_T'^{PT_1}$	$\mathcal{M}_{\mathrm{GT}}^{\prime P'P'}$	$\mathcal{M}_T'^{P'P'}$	$\mathcal{M}_{\mathrm{GT}}^{\prime\prime PP}$	$\mathcal{M}_T''^{PP}$
⁷⁶ Ge	-48.89	170.0	174.3	173.5	-2.945	-6.541	2.110	-1.310	2.255	-1.183	0.798	-0.271	0.028	-0.022
⁸² Se	-41.22	140.7	144.3	143.6	-2.456	-6.206	1.758	-1.249	1.878	-1.183	0.660	-0.259	0.024	-0.021
⁹⁶ Zr	-35.31	124.3	128.5	128.8	-3.116	5.436	1.523	1.090	1.652	0.984	0.613	0.228	0.020	0.019
¹⁰⁰ Mo	-51.96	181.9	188.1	188.6	-4.590	8.055	2.273	1.590	2.464	1.128	0.910	0.317	0.029	0.027
110 Pd	-43.52	151.2	156.5	157.0	-3.945	6.816	1.892	1.356	2.055	1.223	0.762	0.271	0.024	0.023
¹¹⁶ Cd	-32.45	110.5	114.6	115.2	-3.069	4.222	1.374	0.843	1.497	0.760	0.565	0.169	0.017	0.015
124 Sn	-33.19	104.2	106.7	106.1	-1.701	-3.655	1.321	-0.723	1.407	-0.651	0.489	-0.146	0.018	-0.012
¹²⁸ Te	-41.82	131.7	134.9	134.1	-2.439	-4.519	1.667	-0.890	1.776	-1.433	0.617	-0.178	0.023	-0.015
¹³⁰ Te	-38.05	119.7	122.6	121.9	-1.951	-4.105	1.514	-0.807	1.613	-0.726	0.561	-0.160	0.021	-0.014
¹³⁴ Xe	-39.45	124.7	127.8	127.2	-2.111	-4.191	1.564	-0.823	1.669	-0.741	0.585	-0.163	0.021	-0.014
¹³⁶ Xe	-29.83	94.18	96.56	96.09	-1.625	-3.158	1.177	-0.620	1.257	-0.558	0.442	-0.123	0.016	-0.011
¹⁴⁸ Nd	-31.71	103.0	106.0	105.8	-2.145	2.557	1.346	0.510	1.445	0.460	0.508	0.104	0.018	0.009
¹⁵⁰ Nd	-30.18	100.0	103.2	103.1	-2.230	2.955	1.292	0.581	1.392	0.523	0.497	0.116	0.017	0.010
¹⁵⁴ Sm	-31.83	107.1	110.7	110.9	-2.618	3.397	1.356	0.668	1.467	0.601	0.536	0.135	0.018	0.012
¹⁶⁰ Gd	-41.43	142.9	148.0	148.6	-3.808	5.231	1.776	1.023	1.931	0.920	0.722	0.205	0.023	0.018
¹⁹⁸ Pt	-31.87	104.4	108.4	109.0	-2.992	3.172	1.334	0.626	1.454	0.564	0.546	0.119	0.017	0.011
²³² Th	-44.04	154.2	159.7	160.3	-4.116	6.146	1.900	1.185	2.067	1.063	0.783	0.230	0.024	0.021
²³⁸ U	-52.48	183.1	189.7	190.5	-4.981	7.206	2.255	1.393	2.456	1.251	0.932	0.272	0.029	0.024

 IBM results for short range dim-9 contributions under SMEFT frame

 Mechanism not included in current SMEFT frame- the majoron mechanisms
 Rath16', Capedello 19'

	Nuclei	g_A	\overline{M}	m_{ν}	$\overline{M}^{(\chi)}_{ m CR}$		$\overline{M}_{CP}^{(\chi)}$	$M^{(\chi)}_{\omega^2} imes 10^3$		$M_{\omega^2}^{(\chi)}$
$G_F \longrightarrow e_L$			Case I	Case II	Case I	Case II	[<mark>16</mark>]	Case I	Case II	[16]
	⁹⁴ Zr	1.254	3.873 ± 0.373	4.071 ± 0.246	0.158 ± 0.015	0.165 ± 0.010		4.429 ± 0.560	4.500 ± 0.562	
Ť		1.0	4.322 ± 0.421	4.550 ± 0.270	0.198 ± 0.018	0.207 ± 0.012		4.782 ± 0.557	4.860 ± 0.557	
	⁹⁶ Zr	1.254	2.857 ± 0.264	3.021 ± 0.119	0.115 ± 0.010	0.121 ± 0.004		3.198 ± 0.240	3.256 ± 0.229	
		1.0	3.204 ± 0.307	3.393 ± 0.141	0.144 ± 0.013	0.152 ± 0.006		3.414 ± 0.299	3.478 ± 0.290	
T	¹⁰⁰ Mo	1.254	6.250 ± 0.638	6.575 ± 0.452	0.246 ± 0.024	0.258 ± 0.016	0.16	6.386 ± 0.709	6.499 ± 0.711	~ 1.0
$J \bullet \bullet \cdot J$		1.0	7.035 ± 0.746	7.410 ± 0.538	0.308 ± 0.029	0.324 ± 0.020		6.923 ± 0.851	7.047 ± 0.856	
	¹²⁸ Te	1.254	3.612 ± 0.395	3.810 ± 0.286	0.130 ± 0.014	0.137 ± 0.010	0.14	3.732 ± 0.456	3.795 ± 0.457	~ 1.0
		1.0	4.088 ± 0.450	4.316 ± 0.321	0.163 ± 0.018	0.172 ± 0.013		4.161 ± 0.518	4.230 ± 0.519	
	¹³⁰ Te	1.254	4.046 ± 0.497	4.254 ± 0.406	0.143 ± 0.016	0.151 ± 0.012	0.12	4.330 ± 0.892	4.395 ± 0.908	~ 1.0
		1.0	4.569 ± 0.568	4.808 ± 0.461	0.180 ± 0.020	0.189 ± 0.016		4.819 ± 1.003	4.890 ± 1.021	
	¹⁵⁰ Nd	1.254	2.826 ± 0.430	2.957 ± 0.408	0.094 ± 0.014	0.099 ± 0.013	0.15	3.042 ± 0.496	3.081 ± 0.508	~ 1.0
e_L		1.0	3.193 ± 0.492	3.345 ± 0.466	0.118 ± 0.017	0.124 ± 0.016		3.332 ± 0.572	3.375 ± 0.586	

 $\left[T_{1/2}^{(0\nu\chi)}(0^+ \to 0^+)\right]^{-1} = \left|\langle g_\alpha \rangle\right|^m G_\alpha^{(\chi)} \left|M_\alpha^{(\chi)}\right|^2$

However, not no much attention has been paid

- Corrections to double beta decay operators
 - Contributions from chiral two-body currents

Menendez 11', Engel 14', Wang 18'

Modifications of operators in shell model Coraggio 20'

NME from experiments

- Are there any observables which can be related to the NMEs?
- Early attempts are to relate the Fermi NME with double Fermi transition or coulomb excitations

$$M_F^{0\nu} \approx -\frac{2}{e^2} \,\bar{\omega}_{\rm IAS} \langle 0_f | \hat{T}^- | {\rm IAS} \rangle \langle {\rm IAS} | \hat{T}^- | 0_i \rangle$$

NME from experiments

 Recently, the measurement of DGT for determinations of double beta decay matrix elements are proposed

What they found in shell model calculations,

NMEs from experiments

• The idea of EM transitions from DIAS to ground states has been formulated with shell model recently **Romeo 21'**

NME from experiments

 Above results has a similar nucleon pair structure as double beta decay
 Rebeiro 20'

• Two nucleon removal amplitude constrained with charge changing (p,t) reactions

Conclusion

- New formalism of double beta decay based on SMEFT frame has been developed
- The requirements of NME calculations are urgent for new physics survey
- Deviations among traditional many-body approaches are large and we are trying to understand the reason
- There are also efforts of constraining the NMEs from experiment side

Thanks for your attention