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Background

• Theoretical descriptions of 0νββ from new physics to 
nuclear physics
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Figure 1. A schematic overview of the effective field theory approach to evaluating the 0νββ-
decay amplitude starting from high-scale ∆L = 2 dynamics. The different colors represent various
effective field theories at different scales. See the main text for more details.

is that ref. [39] ignores the couplings to ππ — which we now know with a fair amount

of certainty [41–44] — and to πN . The LECs of certain four-nucleon operators are also

underestimated by O(16π2), because non-perturbative renormalization is not considered.

We further discuss these and other differences with ref. [39] in appendix F.

2 Lepton number violation in the SM-EFT

Lepton number is an accidental symmetry of the renormalizable part of the SM, which

is violated by higher-dimensional operators. The ∆L = 2 operators relevant for 0νββ

all have odd dimension [13] and we focus on dimension-five, -seven, and -nine operators

that, respectively, scale as Λ−1, Λ−3, and Λ−5, where Λ is the scale at which lepton num-

ber violation arises. At lower energies, after electroweak symmetry breaking (EWSB) and

integrating out heavy SM fields (top, Higgs-, W-, and Z-bosons) the arising effective oper-

ators can have a different canonical dimension due to positive powers of the Higgs vacuum

expectation value, v ≃ 246GeV (the SM-EFT approach assumes Λ ≫ v). In particular, at

energies around a few GeV the most important ∆L = 2 operators have canonical dimension

three, six, seven, and nine. To avoid confusion, when discussing the original gauge-invariant

SM-EFT ∆L = 2 operators, we denote their dimensions by dim-n with n = 5, 7, 9. When

discussing the operators after EWSB, which are only SU(3)c × U(1)em invariant, we refer

to them as dim-n operators (without the overline) where n = 3, 6, 7, 9.
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Background

• The master formula for decay width (0+—>0+): 

• Here A’s are combinations of the ββ decay NMEs and 
LECs 

• G’s are the phase space factors and are trivial for 
numerical calculations
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d=3 C(6)
SL, SR C(6)

T C(6)
VL C(6)

VR C(7)
VL,VR C(9) (′)

1R C(9)(′)
1L C(9)(′)

2R−5R C(9)(′)
2L−5L C(9)

vector

meAν mββ Λχ Λχϵ2χ − − Λ2
χ

v ϵ2χ − Λ2
χ

v ϵ2χ − Λ2
χ

v −

meAR − − − − − − Λ2
χ

v ϵ2χ − Λ2
χ

v − −

meAM − − − Λχϵ2χ − − − − − − Λ2
χ

v ϵ2χ

meAE − − − Λχϵ3χ Λχϵ3χ − − − − − −

meAme − − − Λχϵ3χ Λχϵ3χ − − − − − −

Table 3. Power-counting estimates of the contribution of low-energy dim-3, -6, -7, and -9 operators
to the amplitudes in eq. (4.3), in terms of mββ , the Higgs vev v, and ϵχ ≡ mπ/Λχ, where Λχ ∼
mN ∼ 1GeV. We take the electron mass and energies to scale as E1 ∼ E2 ∼ me ∼ Λχ ϵ3χ. This table

assumes the NMEs to follow the chiral EFT power counting. C(9)
vector indicates any of the vector

operators in eq. (2.7). Finally, note that to estimate the overall scaling of the amplitudes one needs
to take into account that, up to insertions of dimensionless couplings, the Wilson coefficients scale
as follows: mββ = O(v2/Λ), C(6,7)

i = O(v3/Λ3), C(9)
1L, 4L, 5L = O(v3/Λ3) or O(v5/Λ5) (depending on

the underlying model), and C(9)
i = O(v5/Λ5) for the remaining dim-9 operators.

4.2 Master formula for the 0νββ decay rate

Using the amplitude in eq. (4.1), the expression for the inverse half-life becomes [62, 63],

(
T 0ν
1/2

)−1
=

1

8 ln 2

1

(2π)5

∫
d3k1
2E1

d3k2
2E2

|A|2F (Z,E1)F (Z,E2)δ(E1 +E2 +Ef −Mi) . (4.12)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the elec-

trons and final daughter nucleus in the rest frame of the decaying nucleus. The functions

F (Z,Ei) are defined in appendix A.1 and take into account the fact that the emitted elec-

trons feel the Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in eq. (4.3) to separate the different leptonic

structures, we obtain the final expression

(
T 0ν
1/2

)−1
= g4A

{
G01

(
|Aν |2 + |AR|2

)
− 2(G01 −G04)ReA∗

νAR + 4G02 |AE |2

+2G04
[
|Ame |2 +Re

(
A∗

me
(Aν +AR)

)]

−2G03Re [(Aν +AR)A∗
E + 2AmeA∗

E ]

+G09 |AM |2 +G06Re [(Aν −AR)A∗
M ]

}
. (4.13)

This ‘Master-formula’ describes the 0νββ decay rate up to dim-9 operators in the SM-EFT.

It includes all contributions from the low-energy ∆L = 2 operators in eq. (2.1) and takes

into account all interference terms. It should provide a useful tool to constrain any model

of high-scale LNV, using the most up-to-date hadronic and nuclear input. A differential

version of eq. (4.13) is given in appendix A.1. The various components in eq. (4.13) can

be obtained as follows:

• G0i are phase space factors defined in appendix A.1 and their numerical values are

given in table 4.
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Background

• M’s here are the combinations of NMEs, for the neutrino 
mass mechanism, we have MF, MGT and MT
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two additional structures appear in V3,6,7(q2) and we define

A =
g2AG

2
Fme

πRA

[
Aν ū(k1)PRCūT (k2) +AR ū(k1)PLCūT (k2) (4.3)

+AE ū(k1)γ0CūT (k2)
E1 − E2

me
+Ame ū(k1)CūT (k2) +AM ū(k1)γ0γ5CūT (k2)

]
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
GT , MPP

GT , MMM
GT , MAA

T , MAP
T , MPP

T , MMM
T ) and six short-range matrix elements

(MF, sd, MAA
GT, sd, M

AP
GT, sd, M

PP
GT, sd, M

AP
T, sd, M

PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from

LNV operators of different dimension

Aν =
mββ

me
M(3)

ν +
mN

me
M(6)

ν +
m2

N

mev
M(9)

ν ,

AR =
m2

N

mev
M(9)

R ,

AE = M(6)
E,L + M(6)

E,R ,

Ame = M(6)
me,L

+ M(6)
me,R

,

AM =
mN

me
M(6)

M +
m2

N

mev
M(9)

M . (4.4)

The subamplitude Aν multiplies the leptonic structure that arises from light Majorana-

neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-

range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance

– 16 –

J
H
E
P
1
2
(
2
0
1
8
)
0
9
7

two additional structures appear in V3,6,7(q2) and we define

A =
g2AG

2
Fme

πRA

[
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E1 − E2

me
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ν and M(9)

ν ,
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Aν ū(k1)PRCūT (k2) +AR ū(k1)PLCūT (k2) (4.3)
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where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
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MAP
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T, sd, M

PP
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pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.
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component M(9)
ν arises from V9 and always involves an additional power of 1/v with respect

to the contribution from light Majorana-neutrino exchange. To compensate for this factor

and for the absence of the neutrino mass, we have factored out two powers ofmN in eq. (4.4).

In terms of the standard building blocks defined in appendix A.2, the combination of NMEs

Mi are defined as

M(3)
ν = −V 2

ud

(
− 1

g2A
MF +MGT +MT + 2

m2
π g

NN
ν

g2A
MF, sd

)
, (4.5)

M(6)
ν = Vud

(
B

mN
(C(6)

SL − C(6)
SR) +

m2
π

mNv

(
C(7)
VL − C(7)

VR

))
MPS + VudC

(6)
T MT6 , (4.6)
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ν = − 1

2m2
N

C(9)
ππ L

(
1

2
MAP

GT,sd +MPP
GT,sd +

1

2
MAP

T,sd +MPP
T,sd

)

+
m2

π

2m2
N

C(9)
πN L

(
MAP

GT,sd +MAP
T,sd

)
− 2

g2A

m2
π

m2
N

C(9)
NN LMF, sd , (4.7)

where gNN
ν ∼ O(F−2

π ) is a new leading-order low-energy constant [27], defined in eq. (C.1),

and B ≡ −⟨q̄q⟩/F 2
π ≃ 2.7GeV at µ = 2GeV in the MS scheme. Only C(9)

1L and C(9)
4L, 5L in

M(9)
ν receive matching contributions from dim-7 operators [25], while the remaining terms

are at least dim-9 [24]. In the above expressions we have defined

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP

GT +MPP
GT +

1

2
MAP

T +MPP
T ,

MT6 = 2
g′T − gNN

T
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π
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8gT
gM
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MMM
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+ gπNT
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π
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GT,sd +MAP
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)
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π
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N
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MPP

GT, sd +MPP
T, sd

)
, (4.8)

in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-

pendix C.

The subamplitude AR only receives contributions from the dim-9 scalar operators

involving right-handed electrons. It is only induced by dim-9 operators and is proportional

to

M(9)
R = M(9)

ν

∣∣
L→R

. (4.9)

The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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me
+Ame ū(k1)CūT (k2) +AM ū(k1)γ0γ5CūT (k2)

]
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
GT , MPP

GT , MMM
GT , MAA

T , MAP
T , MPP

T , MMM
T ) and six short-range matrix elements

(MF, sd, MAA
GT, sd, M

AP
GT, sd, M

PP
GT, sd, M

AP
T, sd, M

PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from

LNV operators of different dimension

Aν =
mββ

me
M(3)

ν +
mN
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ν +
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ν ,
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me,L

+ M(6)
me,R

,

AM =
mN
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M(6)

M +
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N

mev
M(9)

M . (4.4)

The subamplitude Aν multiplies the leptonic structure that arises from light Majorana-

neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-

range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
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MAP
GT , MPP
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PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear
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component M(9)
ν arises from V9 and always involves an additional power of 1/v with respect

to the contribution from light Majorana-neutrino exchange. To compensate for this factor

and for the absence of the neutrino mass, we have factored out two powers ofmN in eq. (4.4).

In terms of the standard building blocks defined in appendix A.2, the combination of NMEs

Mi are defined as

M(3)
ν = −V 2

ud

(
− 1

g2A
MF +MGT +MT + 2

m2
π g

NN
ν

g2A
MF, sd

)
, (4.5)

M(6)
ν = Vud

(
B

mN
(C(6)

SL − C(6)
SR) +

m2
π

mNv

(
C(7)
VL − C(7)

VR

))
MPS + VudC

(6)
T MT6 , (4.6)

M(9)
ν = − 1

2m2
N

C(9)
ππ L

(
1

2
MAP

GT,sd +MPP
GT,sd +

1

2
MAP

T,sd +MPP
T,sd

)

+
m2

π

2m2
N

C(9)
πN L

(
MAP

GT,sd +MAP
T,sd

)
− 2

g2A

m2
π

m2
N

C(9)
NN LMF, sd , (4.7)

where gNN
ν ∼ O(F−2

π ) is a new leading-order low-energy constant [27], defined in eq. (C.1),

and B ≡ −⟨q̄q⟩/F 2
π ≃ 2.7GeV at µ = 2GeV in the MS scheme. Only C(9)

1L and C(9)
4L, 5L in

M(9)
ν receive matching contributions from dim-7 operators [25], while the remaining terms

are at least dim-9 [24]. In the above expressions we have defined

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP

GT +MPP
GT +

1

2
MAP

T +MPP
T ,

MT6 = 2
g′T − gNN

T
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m2
π

m2
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MF, sd −
8gT
gM

(
MMM

GT +MMM
T
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+ gπNT
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π

4m2
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(
MAP

GT,sd +MAP
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)

+gππT
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π
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N
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MPP

GT, sd +MPP
T, sd

)
, (4.8)

in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-

pendix C.

The subamplitude AR only receives contributions from the dim-9 scalar operators

involving right-handed electrons. It is only induced by dim-9 operators and is proportional

to

M(9)
R = M(9)

ν

∣∣
L→R

. (4.9)

The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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two additional structures appear in V3,6,7(q2) and we define

A =
g2AG
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πRA

[
Aν ū(k1)PRCūT (k2) +AR ū(k1)PLCūT (k2) (4.3)

+AE ū(k1)γ0CūT (k2)
E1 − E2

me
+Ame ū(k1)CūT (k2) +AM ū(k1)γ0γ5CūT (k2)

]
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
GT , MPP

GT , MMM
GT , MAA

T , MAP
T , MPP

T , MMM
T ) and six short-range matrix elements

(MF, sd, MAA
GT, sd, M

AP
GT, sd, M

PP
GT, sd, M

AP
T, sd, M

PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from

LNV operators of different dimension

Aν =
mββ

me
M(3)

ν +
mN

me
M(6)

ν +
m2

N

mev
M(9)

ν ,

AR =
m2

N

mev
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R ,

AE = M(6)
E,L + M(6)

E,R ,

Ame = M(6)
me,L

+ M(6)
me,R

,

AM =
mN

me
M(6)

M +
m2

N

mev
M(9)

M . (4.4)

The subamplitude Aν multiplies the leptonic structure that arises from light Majorana-

neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-

range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
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MAP
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AP
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PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear
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component M(9)
ν arises from V9 and always involves an additional power of 1/v with respect

to the contribution from light Majorana-neutrino exchange. To compensate for this factor

and for the absence of the neutrino mass, we have factored out two powers ofmN in eq. (4.4).

In terms of the standard building blocks defined in appendix A.2, the combination of NMEs

Mi are defined as

M(3)
ν = −V 2

ud

(
− 1

g2A
MF +MGT +MT + 2

m2
π g

NN
ν

g2A
MF, sd

)
, (4.5)

M(6)
ν = Vud

(
B

mN
(C(6)

SL − C(6)
SR) +

m2
π

mNv

(
C(7)
VL − C(7)

VR

))
MPS + VudC

(6)
T MT6 , (4.6)

M(9)
ν = − 1

2m2
N

C(9)
ππ L

(
1

2
MAP

GT,sd +MPP
GT,sd +

1

2
MAP

T,sd +MPP
T,sd

)

+
m2

π

2m2
N

C(9)
πN L

(
MAP

GT,sd +MAP
T,sd

)
− 2

g2A

m2
π

m2
N

C(9)
NN LMF, sd , (4.7)

where gNN
ν ∼ O(F−2

π ) is a new leading-order low-energy constant [27], defined in eq. (C.1),

and B ≡ −⟨q̄q⟩/F 2
π ≃ 2.7GeV at µ = 2GeV in the MS scheme. Only C(9)

1L and C(9)
4L, 5L in

M(9)
ν receive matching contributions from dim-7 operators [25], while the remaining terms

are at least dim-9 [24]. In the above expressions we have defined

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP

GT +MPP
GT +

1

2
MAP

T +MPP
T ,

MT6 = 2
g′T − gNN

T
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π
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8gT
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MMM
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π
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π
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MPP

GT, sd +MPP
T, sd

)
, (4.8)

in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-

pendix C.

The subamplitude AR only receives contributions from the dim-9 scalar operators

involving right-handed electrons. It is only induced by dim-9 operators and is proportional

to

M(9)
R = M(9)

ν

∣∣
L→R

. (4.9)

The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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A =
g2AG
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πRA
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Aν ū(k1)PRCūT (k2) +AR ū(k1)PLCūT (k2) (4.3)

+AE ū(k1)γ0CūT (k2)
E1 − E2

me
+Ame ū(k1)CūT (k2) +AM ū(k1)γ0γ5CūT (k2)

]
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
GT , MPP

GT , MMM
GT , MAA

T , MAP
T , MPP

T , MMM
T ) and six short-range matrix elements

(MF, sd, MAA
GT, sd, M

AP
GT, sd, M

PP
GT, sd, M

AP
T, sd, M

PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from

LNV operators of different dimension

Aν =
mββ

me
M(3)
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mN

me
M(6)

ν +
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N

mev
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ν ,
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E,R ,
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me,L

+ M(6)
me,R

,

AM =
mN

me
M(6)

M +
m2

N

mev
M(9)

M . (4.4)

The subamplitude Aν multiplies the leptonic structure that arises from light Majorana-

neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-

range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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ν ,
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where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
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T , MAP
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PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different
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component M(9)
ν arises from V9 and always involves an additional power of 1/v with respect

to the contribution from light Majorana-neutrino exchange. To compensate for this factor

and for the absence of the neutrino mass, we have factored out two powers ofmN in eq. (4.4).

In terms of the standard building blocks defined in appendix A.2, the combination of NMEs

Mi are defined as
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(6)
T MT6 , (4.6)
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1

2
MAP

T,sd +MPP
T,sd

)

+
m2

π

2m2
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(
MAP

GT,sd +MAP
T,sd

)
− 2

g2A
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π

m2
N

C(9)
NN LMF, sd , (4.7)

where gNN
ν ∼ O(F−2

π ) is a new leading-order low-energy constant [27], defined in eq. (C.1),

and B ≡ −⟨q̄q⟩/F 2
π ≃ 2.7GeV at µ = 2GeV in the MS scheme. Only C(9)

1L and C(9)
4L, 5L in

M(9)
ν receive matching contributions from dim-7 operators [25], while the remaining terms

are at least dim-9 [24]. In the above expressions we have defined

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP

GT +MPP
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2
MAP

T +MPP
T ,

MT6 = 2
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π
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)
, (4.8)

in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-

pendix C.

The subamplitude AR only receives contributions from the dim-9 scalar operators

involving right-handed electrons. It is only induced by dim-9 operators and is proportional

to

M(9)
R = M(9)

ν

∣∣
L→R

. (4.9)

The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
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2π2

(
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q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫
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)
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≈ ε12
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1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as
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The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by
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(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)

055502-5

REEXAMINING THE LIGHT NEUTRINO EXCHANGE . . . PHYSICAL REVIEW C 92, 055502 (2015)

We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫
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π2q
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q + '
eiq·x,

Hω(x) =
∫
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2π2
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1

q + '− ε12
− 1
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)
eiq·x

≈ ε12

∫
dq
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1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
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{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

⟨λ⟩ cos ψ1

+Cmη

|mββ |
me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2
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. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by
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With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
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MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
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|ξ |,
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
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q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
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)
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≈ ε12
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dq
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1
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eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as
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The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by
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With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
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q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
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≈ ε12
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1
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where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as
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The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by
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With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get
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⟨η⟩ ≈ − tan ζ
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with

|ξ | =
∣∣c23c

2
12c13s

2
13 − c3

12c
3
13 − c13c23c

2
12s

2
13

− c12c13
(
c2

13s
2
12 + s2

13

)∣∣ ≃ 0.82 (36)

Here, cij ≡ cos(θij ) and sij ≡ sin(θij ). ξ was evaluated by
assuming the best fit values for mixing angles θ12, θ13, and
θ23 entering the PMNS matrix [19]. The experimental upper
bound on the mixing angle of left and right vector bosons is
ζ < 0.013, and if the CP violating phase in the mixing matrix
for right-handed quarks is small one gets ζ < 0.0025. The
flavor and CP violating processes of kaons and B mesons
make it possible to deduce the lower bound on the mass of
the heavy vector boson MW2 > 2.9 TeV [11]. In the LRSM
there could be additional contributions to 0νββ decay due
to the double charged Higgs triplet. However, as pointed in
Ref. [11], in the considered case of type-I seesaw dominance,
these contributions can be neglected.

The coefficients CI (I = mm, mλ, mη, λλ, ηη, and λη)
are expressed as combinations of nuclear matrix elements and
phase-space factors:

Cmm = (1 − χF + χT )2G01,

Cmλ = −(1 − χF + χT )[χ2−G03 − χ1+G04],

Cmη = (1 − χF + χT )[χ2+G03 − χ1−G04

−χP G05 + χRG06],

Cλλ = χ2
2−G02 + 1

9χ2
1+G011 − 2

9χ1+χ2−G010, (37)

Cηη = χ2
2+G02 + 1

9χ2
1−G011 − 2

9χ1−χ2+G010 + χ2
P G08

−χP χRG07 + χ2
RG09,

Cλη = −2
[
χ2−χ2+G02 − 1

9 (χ1+χ2+ + χ2−χ1−)G010

+ 1
9χ1+χ1−G011

]
.

The explicit form of nuclear matrix elements MGT and their
ratios χI are presented in Sec. III B. The integrated kinematical
factors are defined as

G0k =
G4

βm2
e

64π5 ln 2R2

∫
δ(ε1 + ε2 + Mf − Mi)

× [h0k(ε1,ε2,R) cos θ + g0k(ε1,ε2,R)]

×p1p2ε1ε2dε1dε2d(cos θ )

=
∫ 1

−1

(
Gθ

0k

ln 2
cos θ + G0k

2

)
d(cos θ ), (38)

where k = 1,2, . . . ,11. p1 and p2 are momenta of electrons
and θ is the angle between emitted electrons. The functions
h0k(ε1,ε2,R) and g0k(ε1,ε2,R) are defined in Sec. III A. These
definitions are independent of the weak axial-vector coupling
constant gA. The quantities G0k are given in units of inverse
years. We note that if the standard wave functions of electron
(w.f. A) are assumed, G010 = G03 and G011 = G04. If in
addition contributions from the induced pseudoscalar term
of nucleon current are neglected, the decay rate in Eq. (33)
reduces to that given in Ref. [6]. Quantity Gθ

0k is relevant for
the angular correlation between the two electrons. We note
that Gθ

03 = Gθ
06 = 0.

A. Components due to electron wave functions
in the phase-space factors

The s1/2 and p1/2 electron wave functions at the nuclear
surface associated with emission of both electrons enter into
the phase-space factors through the functions presented below.

For phase-space factors Gθ
0k related with the angular

distribution of emitted electrons the quantities h0k(ϵ1,ϵ2,R)
are

h01 = −4Css(ε1)Css(ε2),

h02 = 2ε2
12

m2
e

Css(ε1)Css(ε2),

h03 = 0,

h04 = − 2
3meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h05 = 4
meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
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h07 = −16
(meR)2

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) − Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h08 = −8
(meR)2

[
Cf

sp(ε1)Cg
sp(ε2) + Cf

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
,

h09 = 32
(meR)2

Css(ε1)Css(ε2),

h010 = −9
2
h̃010 − h02,

h011 = 9h̃011 + 1
9
h02 + h̃010,
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.
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2
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with

h̃010 = 2ε12

3m2
eR

[
Cf

sp(ε1)Css(ε2) − Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h̃011 = −2
(3meR)2

[
Cf

sp(ε1)Cf
sp(ε2) + Cg

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
.

(40)

In addition, the components g0k(ϵ1,ϵ2,R) of the phase-space factors (38) are

g01 = g11 = C+
ss(ε1)C+

ss(ε2),

g02 = ε2
12

2m2
e

[C+
ss(ε1)C+

ss(ε2) − C−
ss(ε1)C−

ss(ε2)],

g03 = ε12

me

[C+
ss(ε1)C−

ss(ε2) − C+
ss(ε2)C−

ss(ε1)],

g04 = 1
3meR

[−C−
ss(ε1)C−

sp(ε2) − C−
ss(ε2)C−

sp(ε1) + C+
ss(ε1)C+

sp(ε2) + C+
ss(ε2)C+

sp(ε1)] − g03/9,

g05 = −2
meR

[C−
ss(ε1)C−

sp(ε2) + C−
ss(ε2)C−

sp(ε1) + C+
ss(ε1)C+

sp(ε2) + C+
ss(ε2)C+

sp(ε1)],

g06 = 4
meR

[C+
ss(ε1)C−

ss(ε2) + C+
ss(ε2)C−

ss(ε1)], (41)

g07 = −8
(meR)2

[C+
ss(ε1)C−

sp(ε2) + C+
ss(ε2)C−

sp(ε1) + C−
ss(ε1)C+

sp(ε2) + C−
ss(ε2)C+

sp(ε1)],

g08 = 2
(meR)2

[−C−
pp(ε1)C−

ss(ε2) − C−
pp(ε2)C−

ss(ε1) + C+
pp(ε1)C+

ss(ε2) + C+
pp(ε2)C+

ss(ε1) + 2C−
sp(ε1)C−

sp(ε2) + 2C+
sp(ε1)C+

sp(ε2)],

g09 = 8
(meR)2

[C+
ss(ε1)C+

ss(ε2) + C−
ss(ε1)C−

ss(ε2)],

g010 = −9
2
g̃010 − g02,

g011 = 9g̃011 + 1
9
g02 + g̃010,

with

g̃010 = ε12

3m2
eR

[−C+
ss(ε1)C−

sp(ε2) + C+
ss(ε2)C−

sp(ε1) + C−
ss(ε1)C+

sp(ε2) − C−
ss(ε2)C+

sp(ε1)],

g̃011 = 1
18m2

eR
2

[C−
pp(ε1)C−

ss(ε2) + C−
pp(ε2)C−

ss(ε1) + C+
pp(ε1)C+

ss(ε2) + C+
pp(ε2)C+

ss(ε1) − 2C−
sp(ε1)C−

sp(ε2) + 2C+
sp(ε1)C+

sp(ε2)].

(42)

Here, C are combinations of radial components of s1/2 and p1/2 wave functions,

Css(ε) = g−1(ε)f+1(ε), Cpp(ε1) = g1(ε)f−1(ε), Cf
sp(ε) = f−1(ε)f+1(ε), Cg

sp(ε) = g−1(ε)g+1(ε),
(43)

C±
ss(ε) = g2

−1(ε) ± f 2
+1(ε), C±

pp(ε) = g2
+1(ε) ± f 2

−1(ε), C±
sp(ε) = g−1(ε)f−1(ε) ± g+1(ε)f+1(ε).

B. Nuclear matrix elements entering the decay rate

The expression for the 0νββ-decay half-life in Eq. (33) contains matrix element ratios χI and their linear combinations χ1±
and χ2±. The quantities χI are defined as

χI = MI/MGT , (44)

where I = F , T , ωF , ωGT , ωT , qF , qGT , qT , R, and P and MGT is the dominant Gamow-Teller matrix element associated
with the mechanism due to the left-handed currents. The combinations χ1± and χ2± are given by

χ1± = χqGT − 6χqT ± 3χqF , χ2± = χGT ω + χT ω ± χFω − 1
9χ1∓. (45)
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The nuclear matrix elements MI depend on the exchange potentials hI (r) through

MF,GT,T =
∑

rs

⟨Af ∥hF,GT,T (r−)OF,GT,T ∥Ai⟩,

MωF,ωGT,ωT =
∑

rs

⟨Af ∥hωF,ωGT,ωT (r−)OF,GT,T ∥Ai⟩,

MP =
∑

rs

i⟨Af ∥hP (r−)τ+
r τ+

s

(r− × r+)
R2

· σ⃗r∥Ai⟩,

MqF,qGT,qT =
∑

rs

⟨Af ∥hqF,qGT,qT (r−)OF,GT,T ∥Ai⟩,

MR =
∑

rs

⟨Af ∥[hRG(r−)OGT + hRT (r−)OT ]∥Ai⟩,

where OF,GT,T are the familiar operators 1,σ⃗1 · σ⃗2 and 3(σ⃗1 · r̂12)(σ⃗2 · r̂12).
The two-nucleon exchange potentials hI (r) with F , GT , T , qF , qGT , qT , RG, RT , and P can be written as

hI (r) = 2R

π

∫
fI (q,r)

q dq

q + Ēn − (Ei + Ef )/2
, (46)

where

fGT = j0(q,r)
g2

A

(
g2

A(q2) − gA(q2)gP (q2)
mN

q2

3
+ g2

P (q2)
4m2

N

q4

3

)
,

fF = g2
V (q2)
g2

A

j0(qr),

fT = j2(q,r)
g2

A

(
gA(q2)gP (q2)

mN

q2

3
− g2

P (q2)
4m2

N

q4

3

)
,

fqF = r
g2

V (q2)
g2

A

j1(qr)q,

fqGT =
(

g2
A(q2)
g2

A

q + 3
g2

P (q2)
g2

A

q5

4m2
N

+ gA(q2)gP (q2)
g2

A

q3

mN

)
rj1(qr),

fqT = r

3

[(
g2

A(q2)
g2

A

q − gP (q2)gA(q2)
2g2

A

q3

mN

)
j1(qr) − 9

g2
P (q2)
2g2

A

q5

20m2
N

[2j1(qr)/3 − j3(qr)]
]
,

fRG = −R

3mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j0(qr)q2,

fRT = −R

6mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j2(qr)q2,

fP = R2

r

gV (q2)gA(q2)
g2

A

j1(qr)q.

(47)

The two-nucleon exchange potentials hI (r) with I = ωF ,
ωGT , and ωT take the form

hI (r) = 4R

π

∫
fI (q,r)

q2dq

[q + Ēn − (Ei + Ef )/2]2
, (48)

where

fωF = fF , fωGT = fGT , fωT = fT . (49)

Here, r+ = (rr + rs)/2, r− = (rr − rs). rr,s is the coordinate
of the decaying nucleon and ji(qr) (i = 1,2,3) are the
spherical Bessel functions. It is assumed that pr + p′

r ≃ 0,
Er − E′

r ≃ 0, and pr − p′
r ≃ q, where q is the momentum

exchange. The form factors gV (q2), gA(q2), gM (q2), and
gV (q2) are defined in Ref. [20] and gA = 1.269.

If right-handed currents are switched off, all terms in
Eq. (33) except that proportional to C1 vanish. The connection
with the standard 0νββ-decay formula (33) is then G01 ≡ G0ν

and MGT (1 − χF + χT ) ≡ M0ν .
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MR =
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where OF,GT,T are the familiar operators 1,σ⃗1 · σ⃗2 and 3(σ⃗1 · r̂12)(σ⃗2 · r̂12).
The two-nucleon exchange potentials hI (r) with F , GT , T , qF , qGT , qT , RG, RT , and P can be written as

hI (r) = 2R

π

∫
fI (q,r)

q dq

q + Ēn − (Ei + Ef )/2
, (46)

where

fGT = j0(q,r)
g2

A

(
g2

A(q2) − gA(q2)gP (q2)
mN

q2

3
+ g2

P (q2)
4m2

N

q4

3

)
,

fF = g2
V (q2)
g2

A

j0(qr),

fT = j2(q,r)
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A

(
gA(q2)gP (q2)

mN

q2

3
− g2

P (q2)
4m2

N

q4

3

)
,

fqF = r
g2

V (q2)
g2

A

j1(qr)q,

fqGT =
(

g2
A(q2)
g2

A

q + 3
g2

P (q2)
g2

A

q5

4m2
N

+ gA(q2)gP (q2)
g2

A

q3

mN

)
rj1(qr),

fqT = r

3

[(
g2

A(q2)
g2

A

q − gP (q2)gA(q2)
2g2

A

q3

mN

)
j1(qr) − 9

g2
P (q2)
2g2

A

q5

20m2
N

[2j1(qr)/3 − j3(qr)]
]
,

fRG = −R

3mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j0(qr)q2,
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6mN
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A
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r
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A
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(47)

The two-nucleon exchange potentials hI (r) with I = ωF ,
ωGT , and ωT take the form

hI (r) = 4R

π

∫
fI (q,r)

q2dq

[q + Ēn − (Ei + Ef )/2]2
, (48)

where

fωF = fF , fωGT = fGT , fωT = fT . (49)

Here, r+ = (rr + rs)/2, r− = (rr − rs). rr,s is the coordinate
of the decaying nucleon and ji(qr) (i = 1,2,3) are the
spherical Bessel functions. It is assumed that pr + p′

r ≃ 0,
Er − E′

r ≃ 0, and pr − p′
r ≃ q, where q is the momentum

exchange. The form factors gV (q2), gA(q2), gM (q2), and
gV (q2) are defined in Ref. [20] and gA = 1.269.

If right-handed currents are switched off, all terms in
Eq. (33) except that proportional to C1 vanish. The connection
with the standard 0νββ-decay formula (33) is then G01 ≡ G0ν

and MGT (1 − χF + χT ) ≡ M0ν .
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

⟨λ⟩ cos ψ1

+Cmη

|mββ |
me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣
,

⟨η⟩ = η

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣
,

ψ1 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞

⎠
∗⎤

⎦,

ψ2 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej

⎞

⎠
∗⎤

⎦.

(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
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taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
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(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑
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∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν
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]−1 = )0ν

ln 2

= g4
A|MGT |2

{
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. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣
,
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∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣
,
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⎡

⎣
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⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞

⎠
∗⎤

⎦,
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⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej

⎞

⎠
∗⎤

⎦.

(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].
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where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.
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′
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χ in Hamiltonian (20) is neglected.
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With help of (23) and by assuming (27), U0 ≃ V0 and
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where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
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wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

⟨λ⟩ cos ψ1

+Cmη

|mββ |
me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)
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by
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With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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J
H
E
P
1
2
(
2
0
1
8
)
0
9
7

d=3 C(6)
SL, SR C(6)

T C(6)
VL C(6)

VR C(7)
VL,VR C(9) (′)

1R C(9)(′)
1L C(9)(′)

2R−5R C(9)(′)
2L−5L C(9)

vector

meAν mββ Λχ Λχϵ2χ − − Λ2
χ

v ϵ2χ − Λ2
χ

v ϵ2χ − Λ2
χ

v −

meAR − − − − − − Λ2
χ

v ϵ2χ − Λ2
χ

v − −

meAM − − − Λχϵ2χ − − − − − − Λ2
χ

v ϵ2χ

meAE − − − Λχϵ3χ Λχϵ3χ − − − − − −

meAme − − − Λχϵ3χ Λχϵ3χ − − − − − −

Table 3. Power-counting estimates of the contribution of low-energy dim-3, -6, -7, and -9 operators
to the amplitudes in eq. (4.3), in terms of mββ , the Higgs vev v, and ϵχ ≡ mπ/Λχ, where Λχ ∼
mN ∼ 1GeV. We take the electron mass and energies to scale as E1 ∼ E2 ∼ me ∼ Λχ ϵ3χ. This table

assumes the NMEs to follow the chiral EFT power counting. C(9)
vector indicates any of the vector

operators in eq. (2.7). Finally, note that to estimate the overall scaling of the amplitudes one needs
to take into account that, up to insertions of dimensionless couplings, the Wilson coefficients scale
as follows: mββ = O(v2/Λ), C(6,7)

i = O(v3/Λ3), C(9)
1L, 4L, 5L = O(v3/Λ3) or O(v5/Λ5) (depending on

the underlying model), and C(9)
i = O(v5/Λ5) for the remaining dim-9 operators.

4.2 Master formula for the 0νββ decay rate

Using the amplitude in eq. (4.1), the expression for the inverse half-life becomes [62, 63],
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2E2

|A|2F (Z,E1)F (Z,E2)δ(E1 +E2 +Ef −Mi) . (4.12)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the elec-

trons and final daughter nucleus in the rest frame of the decaying nucleus. The functions

F (Z,Ei) are defined in appendix A.1 and take into account the fact that the emitted elec-

trons feel the Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in eq. (4.3) to separate the different leptonic

structures, we obtain the final expression

(
T 0ν
1/2

)−1
= g4A

{
G01

(
|Aν |2 + |AR|2
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− 2(G01 −G04)ReA∗
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|Ame |2 +Re
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−2G03Re [(Aν +AR)A∗
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+G09 |AM |2 +G06Re [(Aν −AR)A∗
M ]

}
. (4.13)

This ‘Master-formula’ describes the 0νββ decay rate up to dim-9 operators in the SM-EFT.

It includes all contributions from the low-energy ∆L = 2 operators in eq. (2.1) and takes

into account all interference terms. It should provide a useful tool to constrain any model

of high-scale LNV, using the most up-to-date hadronic and nuclear input. A differential

version of eq. (4.13) is given in appendix A.1. The various components in eq. (4.13) can

be obtained as follows:

• G0i are phase space factors defined in appendix A.1 and their numerical values are

given in table 4.
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• NME correspondence in different references
J
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E
P
1
2
(
2
0
1
7
)
0
8
2

NMEs Ref. [76, 84, 85] Ref. [83] Ref. [32]

MF MF MF MF,Fω,F q

MAA
GT MAA

GT MAA
GT MGTω,GTq

MAP
GT MAP

GT MAP
GT 4me

B MGTπν +
1
3MGT2π

MPP
GT MPP

GT MPP
GT −1

6MGT2π

MMM
GT r2MMMM
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GT rM

gM
2gAgV RAmN

MR =
g2M

6g2ARAmN
MGT ′

MAA
T ✗ ✗ ✗

MAP
T MAP

T MAP
T 4me

B MTπν +
1
3MT2π

MPP
T MPP

T MPP
T −1

6MT2π

MMM
T r2MMMM

T MMM
T − g2M

12g2ARAmN
M ′

T

MF,sd
memN
m2

π
MF,sd

memN
m2

π
MF,sd

memN
m2

π
MFN = mN

RAm2
π
M ′

F

MAA
GT,sd

memN
m2

π
MAA

GT,sd
memN
m2

π
MAA

GT,sd
memN
m2

π
MGTN = mN

RAm2
π
M ′

GT

MAP
GT,sd

memN
m2

π
MAP

GT,sd
memN
m2

π
MAP

GT,sd
2
3MGT1π

MPP
GT,sd

memN
m2

π
MPP

GT,sd
memN
m2

π
MPP

GT,sd
1
6(MGT2π − 2MGT1π)

MAP
T,sd

memN
m2

π
MAP

T,sd
memN
m2

π
MAP

T,sd
2
3MT1π

MPP
T,sd

memN
m2

π
MPP

T,sd
memN
m2

π
MPP

T,sd
1
6(MT2π − 2MT1π)

Table 9. Comparison of the different notations used in refs. [32, 76, 77]. For each row the expres-

sions in the different columns equal one another in the limit that Ē → 0. Furthermore, B = m2
π

mu+md
,

where ref. [32] uses mu +md = 11.6MeV. gM has different definitions in various papers. Here we
use gM = 1 + κ1 and introduce the ratio rM = (1 + κ1)/κ1.

D Conversion of nuclear matrix elements

In this appendix, we provide the conversion between the NMEs defined in section 6.1 and

those of the original papers [32, 76, 77, 83–85].

For the matrix elements involving the exchange of a light neutrino, our definitions

match those in refs. [76, 83–85]. The only exceptions are MMM
GT,T , for which refs. [76, 84, 85]

used gM (0) = κ1 = 3.7 rather than gM (0) = 1 + κ1. In section 6.1, we thus rescaled these

matrix elements by powers of rM = (1 + κ1)/κ1. For the Gamow-Teller and tensor matrix

elements, ref. [32] does not separately provide the AA, AP , PP and MM components.

However, we can reconstruct the needed NMEs from linear combinations of other matrix

elements computed in ref. [32], as detailed in table 9. The definitions of the NMEs in the

third column of table 9 are given in ref. [32].10

10The relation between MMM
GT and MR given in table 9 takes into account a factor of 1/3 that is missing

from the definition of HR in eq. (21v) of (the first arXiv version of) ref. [32]. We thank M. Horoi for

clarification on this issue.
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Background

• A more precise derivation of decay half-lives and angular 
correlations has also been done including short-range 
dim-9 operators beyond these approximations 

• With
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B. Differential decay distributions

The NMEs presented in the previous section and the
squared leptonic matrix elements shown in Eqs. (42)–(44)
can now be combined to calculate the rate of 0þ → 0þ 0νββ
decay. The fully differential rate is expressed as [15–17]

d2Γ
dE1d cos θ

¼ CwðE1ÞðaðE1Þ þ bðE1Þ cos θÞ; ð48Þ

with

C ¼ G4
Fcos

4θCm2
e

16π5
; wðE1Þ ¼ E1E2p1p2; ð49Þ

and where E2, p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

e

p
and p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 −m2

e

p
are

understood to be functions of E1 due to overall energy
conservation, E2 ¼ Qββ þ 2me − E1. Here, Qββ is the so-
called double beta decay Q value of the given isotope, i.e.,
the kinetic energy release of the electrons.
The coefficients aðE1Þ and bðE1Þ in Eq. (48) are,

respectively, given by

aðE1Þ ¼ fð0Þ11þ

""""
X3

I¼1

ϵLI MI þ ϵνMν

""""
2

þ fð0Þ11þ

""""
X3

I¼1

ϵRI MI

""""
2

þ 1

16
fð0Þ66

""""
X5

I¼4

ϵIMI

""""
2

þ fð0Þ11− × 2Re
#$X3

I¼1

ϵLI MI þ ϵνMν

%$X3

I¼1

ϵRI MI

%%&

þ 1

4
fð0Þ16 × 2Re

#$X3

I¼1

ϵLI MI −
X3

I¼1

ϵRI MI þ ϵνMν

%$X5

I¼4

ϵIMI

%%&
ð50Þ

and

bðE1Þ ¼ fð1Þ11þ

""""
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""""
2

þ fð1Þ11þ

""""
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""""
2

þ 1

16
fð1Þ66
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I¼4

ϵIMI

""""
2

: ð51Þ

These expressions are valid under the presence of any
combination of short-range mechanisms, with associated
particle coefficients ϵI, and the standard light neutrino
exchange where the coefficient ϵν is defined by ϵν ¼
mββ=me. Here, mββ is the usual effective 0νββ mass
given in Eq. (8). The NMEs MI and Mν are defined in
Eqs. (30)–(34) and (36), respectively, where the summa-
tions are over the different short-range current types i ¼
1;…; 5 including their different chiralities, I ¼ ði; XYZÞ
with X; Y; Z ∈ fL;Rg. A distinction is made between
short-range mechanisms of type i ¼ 1, 2, 3 for which
the scalar current is left handed or right handed. This is
indicated by ϵLI and ϵRI , respectively, where the sum is only
over the corresponding terms. This distinction represents
the interference behavior between terms of different elec-
tron chiralities. For example, the first term on the right-
hand side of Eq. (50) describes the contributions of and the
interference among the i ¼ 1, 2, 3 short-range mechanisms
ϵXYLi with left-handed electron chiralities (but including
all quark current chiralities) and that of the standard light
neutrino exchange. Likewise the second term describes
the contributions of i ¼ 1, 2, 3 short-range mechanisms
ϵRI with right-handed electron chiralities including their
cross interference, whereas the third term contains the
interference between these two classes, ðϵL1;2;3; ϵνÞ with
ϵR1;2;3. The other terms appearing in Eqs. (50) and (51) can
be understood in a similar way where the electron-energy

dependent factors fð0;1Þij ≡ fð0;1Þij ðE1Þ describe the correctly
associated squared lepton matrix elements as defined in
Eqs. (45)–(47). Note that the interference term between
short-range operators of type i ¼ 1, 2, 3 and i ¼ 4, 5
vanishes in bðE1Þ due to fð1Þ16 ¼ 0 in Eq. (47).
The fully differential decay rate Eq. (48) contains the

complete kinematic information and integrating over the
whole electron phase space will yield the total rate. Of
experimental interest are the distribution over the single
electron energy and the angular correlation. The single
electron energy distribution is simply given by

dΓ
dE1

¼ 2CwðE1ÞaðE1Þ; ð52Þ

and the energy-dependent angular correlation is introduced
as αðE1Þ ¼ bðE1Þ=aðE1Þ. The latter has the property
−1 < αðE1Þ < þ1 and as it appears in front of the cos θ
term, it describes the likelihood for the electrons to be
emitted back to back [αðE1Þ≳ −1], collinearly [αðE1Þ≲
þ1] or isotropically [αðE1Þ ≈ 0]. Defining

A ¼
Z

Qββþme

me

dE1wðE1ÞaðE1Þ;

B ¼
Z

Qββþme

me

dE1wðE1ÞbðE1Þ; ð53Þ
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squared leptonic matrix elements shown in Eqs. (42)–(44)
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called double beta decay Q value of the given isotope, i.e.,
the kinetic energy release of the electrons.
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These expressions are valid under the presence of any
combination of short-range mechanisms, with associated
particle coefficients ϵI, and the standard light neutrino
exchange where the coefficient ϵν is defined by ϵν ¼
mββ=me. Here, mββ is the usual effective 0νββ mass
given in Eq. (8). The NMEs MI and Mν are defined in
Eqs. (30)–(34) and (36), respectively, where the summa-
tions are over the different short-range current types i ¼
1;…; 5 including their different chiralities, I ¼ ði; XYZÞ
with X; Y; Z ∈ fL;Rg. A distinction is made between
short-range mechanisms of type i ¼ 1, 2, 3 for which
the scalar current is left handed or right handed. This is
indicated by ϵLI and ϵRI , respectively, where the sum is only
over the corresponding terms. This distinction represents
the interference behavior between terms of different elec-
tron chiralities. For example, the first term on the right-
hand side of Eq. (50) describes the contributions of and the
interference among the i ¼ 1, 2, 3 short-range mechanisms
ϵXYLi with left-handed electron chiralities (but including
all quark current chiralities) and that of the standard light
neutrino exchange. Likewise the second term describes
the contributions of i ¼ 1, 2, 3 short-range mechanisms
ϵRI with right-handed electron chiralities including their
cross interference, whereas the third term contains the
interference between these two classes, ðϵL1;2;3; ϵνÞ with
ϵR1;2;3. The other terms appearing in Eqs. (50) and (51) can
be understood in a similar way where the electron-energy

dependent factors fð0;1Þij ≡ fð0;1Þij ðE1Þ describe the correctly
associated squared lepton matrix elements as defined in
Eqs. (45)–(47). Note that the interference term between
short-range operators of type i ¼ 1, 2, 3 and i ¼ 4, 5
vanishes in bðE1Þ due to fð1Þ16 ¼ 0 in Eq. (47).
The fully differential decay rate Eq. (48) contains the

complete kinematic information and integrating over the
whole electron phase space will yield the total rate. Of
experimental interest are the distribution over the single
electron energy and the angular correlation. The single
electron energy distribution is simply given by
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and the energy-dependent angular correlation is introduced
as αðE1Þ ¼ bðE1Þ=aðE1Þ. The latter has the property
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exchange where the coefficient ϵν is defined by ϵν ¼
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experimental interest are the distribution over the single
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Background

• In above derivation, extra currents with their form factors 
are derived 

• We have much complicated structure for NMEs

III. DETERMINATION OF NUCLEAR MATRIX
ELEMENTS

The NMEs for short-range mechanisms have been
analytically derived in [27]. We follow the approach therein
and summarize the basic formalism using nucleon form
factors.

A. Nucleon form factors

The nucleon matrix elements of the colonr-singlet quark
currents in Eq. (3) have the structure [47]

hpjūð1" γ5Þdjni ¼ N̄τþ½FSðq2Þ " FP0ðq2Þγ5'N0; ð19Þ

hpjūγμð1"γ5Þdjni¼ N̄τþ
!
FVðq2Þγμ− i

FWðq2Þ
2mp

σμνqν

"
N0

" N̄τþ
!
FAðq2Þγμγ5−

FPðq2Þ
2mp

γ5qμ
"
N0;

ð20Þ

hpjūσμνð1" γ5Þdjni ¼ N̄τþ
!
Jμν " i

2
ϵμνρσJρσ

"
N0; ð21Þ

where τþ denotes the isospin-raising operator which con-
verts a neutron into a proton, and the tensor Jμν in Eq. (21)
is defined as

Jμν ¼ FT1
ðq2Þσμν þ i

FT2
ðq2Þ

mp
ðγμqν − γνqμÞ

þ
FT3

ðq2Þ
m2

p
ðσμρqρqν − σνρqρqμÞ: ð22Þ

The above matrix elements generally depend on the
neutron and proton momenta pn ¼ pN0 and pp ¼ pN ,
respectively. The nucleon form factors are then functions
of the momentum transfer q ¼ pp − pn. The most general
parametrization of the vector current in Eq. (20) would
include also induced scalar and axial-tensor terms—these
can be, however, safely neglected, since they vanish in the
isospin-symmetric limit and they are not enhanced by any
other effects [48].
The momentum dependence in Eqs. (19)–(21) is

encoded in the nucleon form factors FXðq2Þ with
X ¼ S; P0; V;W; A; P; T1; T2; T3, usually parametrized in
the so-called dipole form, FXðq2Þ ¼ gX=ð1þ q2=m2

XÞ2.
Here, the so called charge gX represents the value of the
form factor at zero momentum transfer, gX ≡ FXð0Þ, and
the scale mX determines the shape of the form factor.
We apply this parametrization to all form factors except
for the pseudoscalar form factors FP0ðq2Þ and FPðq2Þ,
which are enhanced by the pion resonance. The form
factors with their corresponding parametrizations and
charges are given by

FSðq2Þ ¼
gS

ð1þ q2=m2
VÞ2

; gS ¼ 1.0 ½49'; ð23Þ

FP0ðq2Þ ¼ gP0

ð1þ q2=m2
VÞ2

1

1þ q2=m2
π
; gP0 ¼ 349 ½49';

ð24Þ

FVðq2Þ ¼
gV

ð1þ q2=m2
VÞ2

; gV ¼ 1.0; ð25Þ

FWðq2Þ ¼
gW

ð1þ q2=m2
VÞ2

; gW ¼ 3.7; ð26Þ

FAðq2Þ ¼
gA

ð1þ q2=m2
AÞ2

; gA ¼ 1.269; ð27Þ

FPðq2Þ ¼
gP

ð1þ q2=m2
AÞ2

1

1þ q2=m2
π
;

gP ¼ 4gA
m2

p

m2
π

#
1 − m2

π

m2
A

$
¼ 231 ½50'; ð28Þ

FTi
ðq2Þ ¼

gTi

ð1þ q2=m2
VÞ2

; gT1;2;3
¼ 1.0;−3.3; 1.34 ½47':

ð29Þ

The shape parameters aremV ¼0.84GeV,mA ¼ 1.09 GeV
[49] and the pion mass is mπ ¼ 0.138 GeV. The form
factors FVðq2Þ, FWðq2Þ, and FAðq2Þ can be determined
experimentally and the parametrizations shown above
provide a good description in the range 0 ≤ jqj ≤
200 MeV of interest in 0νββ decay. On the other hand,
as it is not possible to directly obtain the induced pseu-
doscalar form factor from experiment, we use the para-
metrization suggested in Ref. [50], which is based on the
partially conserved axial-vector current hypothesis. The
corresponding value of the free gP charge agrees with
the recent chiral perturbation theory analysis [51], which
yields the value gP ¼ 233. The value is also consistent
with measurements of muon capture. With the muon mass
mμ¼0.105GeV, the resulting value of FPð−0.88m2

μÞ¼8.0
agrees well with the measured value of FPð−0.88m2

μÞ ¼
8.06" 0.55 [52]. The scalar and pseudoscalar charges, gS
and gP0 , come from recent lattice QCD calculations [53]. As
there is not much information on the q2 dependence of the
corresponding form factors, we use the dipole parametri-
zation, which, in the Breit frame, is the Fourier transform of
the matter distribution. In the case of the pseudoscalar form
factor we also include the monopole factor 1=ð1þ q2=m2

πÞ
used in chiral perturbation theory. As for the tensor
form factors, only FT1

enters our calculations. The value
of the corresponding charge gT1

quoted by Ref. [53]
reads 0.987" 0.055. We emphasize that the charges in
Eqs. (23)–(29) are applicable at the free nucleon level.
When calculating the 0νββ decay NMEs, we will use an
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parametrization of the vector current in Eq. (20) would
include also induced scalar and axial-tensor terms—these
can be, however, safely neglected, since they vanish in the
isospin-symmetric limit and they are not enhanced by any
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the so-called dipole form, FXðq2Þ ¼ gX=ð1þ q2=m2
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Here, the so called charge gX represents the value of the
form factor at zero momentum transfer, gX ≡ FXð0Þ, and
the scale mX determines the shape of the form factor.
We apply this parametrization to all form factors except
for the pseudoscalar form factors FP0ðq2Þ and FPðq2Þ,
which are enhanced by the pion resonance. The form
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The shape parameters aremV ¼0.84GeV,mA ¼ 1.09 GeV
[49] and the pion mass is mπ ¼ 0.138 GeV. The form
factors FVðq2Þ, FWðq2Þ, and FAðq2Þ can be determined
experimentally and the parametrizations shown above
provide a good description in the range 0 ≤ jqj ≤
200 MeV of interest in 0νββ decay. On the other hand,
as it is not possible to directly obtain the induced pseu-
doscalar form factor from experiment, we use the para-
metrization suggested in Ref. [50], which is based on the
partially conserved axial-vector current hypothesis. The
corresponding value of the free gP charge agrees with
the recent chiral perturbation theory analysis [51], which
yields the value gP ¼ 233. The value is also consistent
with measurements of muon capture. With the muon mass
mμ¼0.105GeV, the resulting value of FPð−0.88m2

μÞ¼8.0
agrees well with the measured value of FPð−0.88m2

μÞ ¼
8.06" 0.55 [52]. The scalar and pseudoscalar charges, gS
and gP0 , come from recent lattice QCD calculations [53]. As
there is not much information on the q2 dependence of the
corresponding form factors, we use the dipole parametri-
zation, which, in the Breit frame, is the Fourier transform of
the matter distribution. In the case of the pseudoscalar form
factor we also include the monopole factor 1=ð1þ q2=m2

πÞ
used in chiral perturbation theory. As for the tensor
form factors, only FT1

enters our calculations. The value
of the corresponding charge gT1

quoted by Ref. [53]
reads 0.987" 0.055. We emphasize that the charges in
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analytically derived in [27]. We follow the approach therein
and summarize the basic formalism using nucleon form
factors.

A. Nucleon form factors
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currents in Eq. (3) have the structure [47]
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where τþ denotes the isospin-raising operator which con-
verts a neutron into a proton, and the tensor Jμν in Eq. (21)
is defined as

Jμν ¼ FT1
ðq2Þσμν þ i

FT2
ðq2Þ

mp
ðγμqν − γνqμÞ

þ
FT3

ðq2Þ
m2

p
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The above matrix elements generally depend on the
neutron and proton momenta pn ¼ pN0 and pp ¼ pN ,
respectively. The nucleon form factors are then functions
of the momentum transfer q ¼ pp − pn. The most general
parametrization of the vector current in Eq. (20) would
include also induced scalar and axial-tensor terms—these
can be, however, safely neglected, since they vanish in the
isospin-symmetric limit and they are not enhanced by any
other effects [48].
The momentum dependence in Eqs. (19)–(21) is

encoded in the nucleon form factors FXðq2Þ with
X ¼ S; P0; V;W; A; P; T1; T2; T3, usually parametrized in
the so-called dipole form, FXðq2Þ ¼ gX=ð1þ q2=m2

XÞ2.
Here, the so called charge gX represents the value of the
form factor at zero momentum transfer, gX ≡ FXð0Þ, and
the scale mX determines the shape of the form factor.
We apply this parametrization to all form factors except
for the pseudoscalar form factors FP0ðq2Þ and FPðq2Þ,
which are enhanced by the pion resonance. The form
factors with their corresponding parametrizations and
charges are given by

FSðq2Þ ¼
gS

ð1þ q2=m2
VÞ2

; gS ¼ 1.0 ½49'; ð23Þ

FP0ðq2Þ ¼ gP0
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ðq2Þ ¼

gTi

ð1þ q2=m2
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; gT1;2;3
¼ 1.0;−3.3; 1.34 ½47':
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The shape parameters aremV ¼0.84GeV,mA ¼ 1.09 GeV
[49] and the pion mass is mπ ¼ 0.138 GeV. The form
factors FVðq2Þ, FWðq2Þ, and FAðq2Þ can be determined
experimentally and the parametrizations shown above
provide a good description in the range 0 ≤ jqj ≤
200 MeV of interest in 0νββ decay. On the other hand,
as it is not possible to directly obtain the induced pseu-
doscalar form factor from experiment, we use the para-
metrization suggested in Ref. [50], which is based on the
partially conserved axial-vector current hypothesis. The
corresponding value of the free gP charge agrees with
the recent chiral perturbation theory analysis [51], which
yields the value gP ¼ 233. The value is also consistent
with measurements of muon capture. With the muon mass
mμ¼0.105GeV, the resulting value of FPð−0.88m2

μÞ¼8.0
agrees well with the measured value of FPð−0.88m2

μÞ ¼
8.06" 0.55 [52]. The scalar and pseudoscalar charges, gS
and gP0 , come from recent lattice QCD calculations [53]. As
there is not much information on the q2 dependence of the
corresponding form factors, we use the dipole parametri-
zation, which, in the Breit frame, is the Fourier transform of
the matter distribution. In the case of the pseudoscalar form
factor we also include the monopole factor 1=ð1þ q2=m2

πÞ
used in chiral perturbation theory. As for the tensor
form factors, only FT1

enters our calculations. The value
of the corresponding charge gT1

quoted by Ref. [53]
reads 0.987" 0.055. We emphasize that the charges in
Eqs. (23)–(29) are applicable at the free nucleon level.
When calculating the 0νββ decay NMEs, we will use an
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hpjūð1" γ5Þdjni ¼ N̄τþ½FSðq2Þ " FP0ðq2Þγ5'N0; ð19Þ
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[49] and the pion mass is mπ ¼ 0.138 GeV. The form
factors FVðq2Þ, FWðq2Þ, and FAðq2Þ can be determined
experimentally and the parametrizations shown above
provide a good description in the range 0 ≤ jqj ≤
200 MeV of interest in 0νββ decay. On the other hand,
as it is not possible to directly obtain the induced pseu-
doscalar form factor from experiment, we use the para-
metrization suggested in Ref. [50], which is based on the
partially conserved axial-vector current hypothesis. The
corresponding value of the free gP charge agrees with
the recent chiral perturbation theory analysis [51], which
yields the value gP ¼ 233. The value is also consistent
with measurements of muon capture. With the muon mass
mμ¼0.105GeV, the resulting value of FPð−0.88m2
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agrees well with the measured value of FPð−0.88m2
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8.06" 0.55 [52]. The scalar and pseudoscalar charges, gS
and gP0 , come from recent lattice QCD calculations [53]. As
there is not much information on the q2 dependence of the
corresponding form factors, we use the dipole parametri-
zation, which, in the Breit frame, is the Fourier transform of
the matter distribution. In the case of the pseudoscalar form
factor we also include the monopole factor 1=ð1þ q2=m2
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used in chiral perturbation theory. As for the tensor
form factors, only FT1

enters our calculations. The value
of the corresponding charge gT1

quoted by Ref. [53]
reads 0.987" 0.055. We emphasize that the charges in
Eqs. (23)–(29) are applicable at the free nucleon level.
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF %
g2P0

12
ðM0P0P0

GT þM0P0P0

T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2

12
ð−2M0WW

GT þM0WW
T Þ

∓
!
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
"
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i
!
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1
T Þ

"
; ð33Þ

M5 ¼ gVgSMF %
!
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0

GT þM0q0PP0

T Þ
"
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π
1
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF %
g2P0

12
ðM0P0P0

GT þM0P0P0

T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2

12
ð−2M0WW

GT þM0WW
T Þ

∓
!
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
"
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i
!
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1
T Þ

"
; ð33Þ

M5 ¼ gVgSMF %
!
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0

GT þM0q0PP0

T Þ
"
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π
1
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: ð35Þ
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mechanism with the NME
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF %
g2P0

12
ðM0P0P0

GT þM0P0P0

T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2

12
ð−2M0WW

GT þM0WW
T Þ

∓
!
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
"
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i
!
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1
T Þ

"
; ð33Þ

M5 ¼ gVgSMF %
!
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0

GT þM0q0PP0

T Þ
"
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π
1
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: ð35Þ
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mechanism with the NME
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF %
g2P0

12
ðM0P0P0

GT þM0P0P0

T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2

12
ð−2M0WW

GT þM0WW
T Þ

∓
!
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
"
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i
!
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1
T Þ

"
; ð33Þ

M5 ¼ gVgSMF %
!
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0

GT þM0q0PP0

T Þ
"
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π
1
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effective axial-vector charge gA ¼ 1.0 and, consequently,
an induced pseudoscalar charge gPðgA ¼ 1.0Þ ¼ 182 to
approximately account for quenching in the nuclear
medium.

B. Nuclear matrix elements

The five different types of quark current products
appearing in Eq. (3) are mapped to the nucleon matrix
elements according to Eqs. (19)–(21). By virtue of a
nonrelativistic expansion and the closure approximation,
the resulting product of nucleon matrix elements is then
mapped to the nuclear matrix element between the final
and initial 0þ nuclear states involved in the 0νββ decay.
This procedure is described in Ref. [27], and we here
summarize the definition of NMEs involved. One should
note that in the following expressions the relative sign
between Gamow-Teller (GT) and tensor (T) terms is
different than in our previous papers [28–30,54] and other
available literature taking into account tensor terms using
the formulation in [50]. The confusion about the relative
sign arises from Eqs. (13) and (22) in [50], where in
Eq. (13) a minus sign is used in front of the tensor term,
while in Eq. (22) the plus sign is used. The tensor term
contributes very little to the standard long-range mecha-
nism, but, in the case of short-range mechanisms, it has a
notable effect. Thus we have checked the derivation and
concluded that the following signs should be used.
The NMEs for the five short-range operators will gen-

erally depend on the chiralities of the two quark currents
involved. For the first three operators associated with ϵχ1, ϵ

χ
2,

and ϵχ3, the two quark currents are of the same type.
Consequently, three possible combinations occur corre-
sponding to the chiralities RR, LL, and ðRLþ LRÞ=2. It
turns out that the resulting NMEs only depend on whether
the quark chiralities are equal (RR, LL) or different
ðRLþ LRÞ=2, represented by the upper and lower sign,
respectively, in the expressions

M1 ¼ g2SMF %
g2P0

12
ðM0P0P0

GT þM0P0P0

T Þ; ð30Þ

M2 ¼ −2g2T1
MT1T1

GT ; ð31Þ

M3 ¼ g2VMF þ ðgV þ gWÞ2

12
ð−2M0WW

GT þM0WW
T Þ

∓
!
g2AM

AA
GT −

gAgP
6

ðM0AP
GT þM0AP

T Þ

þ g2P
48

ðM00PP
GT þM00PP

T Þ
"
: ð32Þ

For the operators associated with ϵχ4 and ϵχ5, the two quark
currents involved have different Lorentz structures and thus
all four possible combinations of chiralities have to be
considered in principle: RR, LL, RL, andLR. Again, it turns

out that the NMEs only distinguish between the case where
the quark chiralities are the same (RR, LL → upper sign) or
different (RL, LR → lower sign),

M4 ¼∓ i
!
gAgT1

MAT1

GT −
gPgT1

12
ðM0PT1

GT þM0PT1
T Þ

"
; ð33Þ

M5 ¼ gVgSMF %
!
gAgP0

12
ðM̃AP0

GT þ M̃AP0
T Þ

−
gPgP0

24
ðM0q0PP0
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"
: ð34Þ

In the above expressions, we have explicitly factored the
form factor charges gX ¼ FXð0Þ. The q dependence arising
from the product of the reduced form factors FXðq2Þ=gX is
still to be included in the various matrix elements appearing
in Eqs. (30)–(34). The individual Fermi (MF), Gamow-
Teller (MGT), and tensor (MT) NMEs along with the
associated reduced form factor products h̃ðq2Þ are given
in Table I. The numerical values of these NME will be
given in Sec. III C, but we would like to note that the so-
called recoil NMEs, M̃AP

GT and M̃AP
T , and the NMEs

explicitly depending on the temporal momentum transfer
q0, M

0q0PP
GT , M0q0PP

T are difficult to evaluate exactly. We
instead assume that the sum of nucleon spatial momenta is
Q ¼ pa þ pb ≈ q [15–17], approximately applicable in an
average sense considering that the NME is calculated
summing over all nucleons in the nucleus. Similarly, we
take the average value q0 ∼ q2=mp ≈ 10 MeV [17] for the
temporal component of the momentum transfer. This allows
us to reduce the corresponding NMEs as indicated in Table I.
In addition to the product of the reduced nucleon form

factors, the NMEs listed in Table I also contain the so-
called neutrino potential describing the q dependence of the
underlying particle physics mediator of 0νββ decay. Here
we follow the formulation of [29,50] where the two-body
transition operator is constructed in momentum space as the
product of the neutrino potential vðqÞ times the product of
the reduced form factors h̃ðq2Þ. In the case of the short-
range mechanisms we consider here, the neutrino potential
is especially simple; as pointlike operators, they are
described by a Dirac delta function in configuration space,
δðra − rbÞ, hence in momentum space it is a q-independent
constant. Following the usual normalization the short-range
neutrino potential is [29,50]

vðq2Þ ¼ 2

π
1
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Approaches

• Modern nuclear structure calculations relay on our 
understanding of nuclear force and many-body 
correlations 

• For the nuclear force used in many-body approaches: 

• Effective nuclear force — derived from bare nucleon 
force and softened by certain methods 

• Phenomenological force — starting with certain 
symmetries and the parameters are fitted by nuclear 
properties



Approaches

• Most traditional methods used in double beta decay calculations 
are based on phenomenological forces 

• Shell Model (configuration interaction) 

• DFT based on relativistic and non-relativistic mean-field 

• GCM based on DFT 

• QRPA based on DFT or phenomenological mean-field 

• Geometric models without explicit inclusions of nuclear forces: 
pSU(3), IBM etc.



Results

• The light neutrino mass mechanism has been in last decade well 
investigated although the new LO terms haven’t been included 

• It is impossible to give a complete list 

• SM: renormalization of operator; larger model space 

• QRPA: isospin symmetry restoration 

• IBM: ISR 

• PHFB 

• DFT+GCM: relativity

Caurier 12’, Horoi 13’, Menendez 14’, Iwata 16’, Menendez 18’, Coraggio 20’

Vaquero 13’, Song14’, Yao 15’, Song17’, Jiao 17’ 

Barea 13’, Barea15’ 

Mustonen 13’, Simkovic13’, Hyvarinen 15’, Fang 18’ 

Sahu 15’, Rath 19’, Wang 21’ 



Results

• Compared to light neutrino mass mechanism, there are less on 
heavy neutrino mass 

• SM: renormalization of operator; larger model space 

• QRPA: isospin symmetry restoration 

• IBM: ISR 

• PHFB 

• DFT+GCM: relativity

Horoi 13’, Menendez 18’

Song17’

Barea15’ 

Hyvarinen 15’, Fang 18’ 

Rath 19’



Results

• Deviations from different methods 

• Originating from various sources

L. S. SONG, J. M. YAO, P. RING, AND J. MENG PHYSICAL REVIEW C 95, 024305 (2017)

TABLE V. The NMEs M0ν and the limits imposed the effective
neutrino masses |⟨mν⟩| (eV) and |⟨m−1

νh
⟩|−1 (×106 GeV) based

on the present CDFT calculation. The lower limits of the half-
life T 0ν

1/2(×1022 yr, 90% C.L.) for the 0νββ decay are from the
most recent measurements [2,3,81–89], and the phase-space factors
G0ν(×10−15 yr−1) are from Ref. [4].

T 0ν
1/2 G0ν Light-ν Heavy-ν

M0ν |⟨mν⟩| M0ν
∣∣〈m−1

νh

〉∣∣−1

48Ca 5.8 24.81 2.71 <3.2 84.5 >4.7
76Ge 3000 2.363 6.04 <0.2 209.1 >82.1
82Se 36 10.16 5.30 <1.0 189.3 >16.9
96Zr 0.92 20.58 6.37 <3.7 220.9 >4.5
100Mo 110 15.92 6.48 <0.4 232.6 >45.4
116Cd 17 16.70 5.43 <1.1 201.1 >15.8
124Sn 0.005 9.04 4.25 <114 168.5 >0.2
130Te 280 14.22 4.89 <0.3 193.8 >57.1
136Xe 10 700 14.58 4.24 <0.06 166.3 >306.5
150Nd 2.0 63.03 5.46 <1.7 218.2 >11.4

the CDFT results for the NMEs, our predictions for the limits
of neutrino masses are |⟨mν⟩| < 1.7 eV for light neutrinos
and |⟨m−1

νh
⟩|−1 > 11.4 × 106 GeV for heavy neutrinos. The

predictions by other nuclear models are shown in Table IV.
By comparison, the CDFT beyond-mean-field results impose
the most stringent constraints on the effective masses of both
light and heavy neutrinos.

Table V lists our final NMEs M0ν of the 0νββ decay in
ten candidate nuclei for both the light- and the heavy-neutrino
exchange modes. According to the lower limits of the half-
life T 0ν

1/2 from the most recent measurements [2,3,81–89] and
the phase-space factors G0ν [4], the limits on the effective
neutrino masses |⟨mν⟩| and |⟨m−1

νh
⟩|−1 are further estimated,

respectively. So far, the most stringent constraints are set by
the case of 136Xe, which implies that |⟨mν⟩| < 0.06 eV for
light neutrinos and |⟨m−1

νh
⟩|−1 > 3.065 × 108 GeV for heavy

neutrinos. Finally, the CDFT results are compared with the
NMEs M0ν recently obtained from other nuclear models in
Fig. 4. Our results are among the largest values of the existing
calculations in most cases, except that the NMEs M0ν for
124Sn and 130Te are considerably smaller than those given by
the nonrelativistic EDF calculation. The agreements with the
EDF results are remarkable in the nuclei other than 124Sn,
130Te, and 150Nd.

V. SUMMARY

The 0νββ-decay NMEs have been calculated within the
framework of beyond-mean-field CDFT by considering the
underlying mechanisms of both light- and heavy-neutrino
exchange. In particular, by investigating in detail the effects of
relativity and SRCs in 150Nd, we come to the following con-
clusions. (1) Both effects are negligible for the light-neutrino
NME, which indicates that the nonrelativistic reduction to
the decay operator is a good approximation and the SRC
correction can be safely neglected. (2) The heavy-neutrino
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FIG. 4. Comparison of the NMEs M0ν of the 0νββ decay from
different model calculations, which include the EDF [58], IBM
[55], PHFB [50,51], QRPA-NC [42], QRPA-Tü [45], and CSM [15]
calculations, as well as the CDFT calculation in this paper with
the GCM + PNAMP wave functions and the Argonne-parametrized
SRCs. The CDFT results without considering the SRC effect [6] is
also shown for the light-neutrino exchange mode by the dashed line
in panel (a).

NME is more sensitive to both the relativistic correction
and the inclusion of SRC than in the light-neutrino case.
Therefore, it should be treated more carefully. (3) For the
SRCs, the M-S and the Bonn parametrizations, respectively,
introduce the most and the least quenching effects to the total
NME, while the Argonne parametrization lies in between.
Finally, according to our results for the total NMEs in
ten candidate nuclei, combined with the observed lower
limits on the 0νββ-decay half-lives, the predicted strongest
limits on the effective masses are |⟨mν⟩| < 0.06 eV for
light neutrinos and |⟨m−1

νh
⟩|−1 > 3.065 × 108 GeV for heavy

neutrinos.
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• Comparative studies between SM and EDF 

• They come out with the conclusion, SM and EDF are similar 
at some level when seniority is 0 for SM and only spherical 
shape are assumed for EDF
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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FIG. 2. (Color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47]. The
QRPA results are shown for gT =0

pp = 0.673 (red dots) and gT =0
pp =

0.643 (red crosses). The CI results are shown for the JUN45 (dot),
jj44bpn (cross), and gcn28:50 (triangle) Hamiltonians.

pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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FIG. 3. (Color online) The 0N NME for heavy-neutrino decay
of 76Ge. See caption for Fig. 2. The QRPA point with the triangle is
from Ref. [29].

R0N
V = 1.9 as the number of orbitals included in the sums

increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,
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FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.
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FIG. 2. (Color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47]. The
QRPA results are shown for gT =0

pp = 0.673 (red dots) and gT =0
pp =

0.643 (red crosses). The CI results are shown for the JUN45 (dot),
jj44bpn (cross), and gcn28:50 (triangle) Hamiltonians.

pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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R0N
V = 1.9 as the number of orbitals included in the sums

increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the Jπ
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,

0 2 4 6

m
od

el

M0ν(GT−light)

76Ge

IBM (jj44)

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

QRPA ([29])

FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.

041301-3

RAPID COMMUNICATIONS

EVALUATION OF THE THEORETICAL NUCLEAR MATRIX . . . PHYSICAL REVIEW C 92, 041301(R) (2015)

0.0 0.2 0.4 0.6

m
od

el

M2ν(GT) (MeV )−1

76Ge

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

experiment

FIG. 2. (Color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47]. The
QRPA results are shown for gT =0

pp = 0.673 (red dots) and gT =0
pp =

0.643 (red crosses). The CI results are shown for the JUN45 (dot),
jj44bpn (cross), and gcn28:50 (triangle) Hamiltonians.

pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of

0 10 20 30 40 50

m
od

el

M0ν(GT−heavy)/10

76Ge

IBM (jj44)

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

QRPA ([29])

FIG. 3. (Color online) The 0N NME for heavy-neutrino decay
of 76Ge. See caption for Fig. 2. The QRPA point with the triangle is
from Ref. [29].

R0N
V = 1.9 as the number of orbitals included in the sums

increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the Jπ
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,

0 2 4 6

m
od

el

M0ν(GT−light)

76Ge

IBM (jj44)

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

QRPA ([29])

FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.

041301-3

RAPID COMMUNICATIONS

B. A. BROWN, D. L. FANG, AND M. HOROI PHYSICAL REVIEW C 92, 041301(R) (2015)

one finds R0ν
pp = {M0ν

GT/[M0ν
GT(Jpp = 0+)]} = 0.53 for CI [56],

0.90 for IBM-2 [39], and 0.72 for QRPA. The reason for these
differences may be due to the truncation within jj44 made by
IBM-2 and QRPA. For the 0N NME this ratio is R0N

pp = 0.89
in CI [56]; the cancellation from higher Jpp is much less,
the result is dominated by the Jpp = 0+ contribution, and its
connection to pairing is discussed above. In the jj44 model
space the agreement between the 0N NME (Fig. 3) for CI,
QRPA, and IBM-2 is much better than that for 0ν (Fig. 4)
since the cancellation from higher Jpp terms is small.

Holt and Engel [75] considered the effect of 2p-2h admix-
tures beyond the jj44 model space by treating the effective
transition operator in MBPT. They found a 20% increase in
the 0ν NME for 76Ge. Part of these MBPT contributions goes
beyond QRPA. At present this is the best estimate for the
correction beyond CI in the jj44 model space. We will use
R0ν

V = 1.2(2) with a generously large value of 20% for its
uncertainty.

The results shown above are based on the CD-Bonn SRC.
This is the weakest of several SRCs that have been used [55].
The strongest is the AV18 SRC, and the UCOM [76] SRC is
about half way between. For our final result we use the average
of CD-Bonn and AV18 with an error that encompasses both.
The result is that the 0N NMEs are multiplied by R0N

S =
0.80(20) and the 0ν NMEs are multiplied by R0ν

S = 0.97(3),
where RS is the SRC correction relative to the CD-Bonn
starting point.

Finally, we combine all of the factors discussed above
in the form M = [MGT(CI)][RV ][RS][RGT]. Based on the
experimental value for 2ν the NME is

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due to
mixing beyond the jj44 model space. The error in the CI
NME reflects the spread obtained with the three different
Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
(4)

where the CI value is from Fig. 3. The error for 0N is
dominated by the SRC correction. Finally for 0ν,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 4. The error for 0ν is dominated
by an estimated uncertainty of 20% in the correction beyond
jj44. Comparison to previous values must take into account
the isospin correction for QRPA and IBM discussed above
and the choice of SRC (in our RS factor). The range is from
2.8 for CI [33] to 4.7 for IBM-2 [41] and 5.3 for QRPA [29].

Our result is in between these, but it is not an average since
we have made comments on the deficiencies of all of these
models. Using Eq. (1) with the experimental limit of the half-
life (T 0ν

1/2 > 3 × 1025 yr [54]) and the phase-space factor from
Ref. [44], we obtain |ην |mec

2 < 0.3 eV.
Sometimes the 2ν correction factor (0.45 in this case) is

expressed in terms of an effective gA value (g′
A = 0.85 in this

case). Since the factor (gA)4 appears inside the phase-space
factor of Eq. (1), one might think that the decay rate for 0ν and
0N could be reduced by a factor of (g′

A/1.27)4 = 0.20 [41,77].
However, this g′

A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occupation
numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
terms of changes relative to the various contributions we have
discussed, and evaluations for other cases of interest [46]
should be performed.
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Table 4. Average values for NTMEs Mα (uncertainty ∆Mα) for the 0νβ−β− decay of 94,96Zr,
100Mo, 110Pd, 128,130Te and 150Nd isotopes.

NTMEs 94Zr 96Zr 100Mo 110Pd 128Te 130Te 150Nd

MωF 0.569 0.443 1.004 1.102 0.587 0.642 0.456
∆MωF 0.066 0.050 0.130 0.150 0.061 0.081 0.071
MqF 0.627 0.470 1.115 1.259 0.699 0.779 0.567
∆MqF 0.058 0.055 0.156 0.185 0.065 0.114 0.094
MωGT -3.119 -2.303 -4.985 -5.618 -2.849 -3.140 -2.134
∆MωGT 0.312 0.230 0.516 0.596 0.335 0.360 0.324
MqGT -3.841 -2.799 -6.081 -7.068 -3.541 -3.969 -2.819
∆MqGT 0.318 0.183 0.483 0.591 0.325 0.455 0.398
MqT 0.021 0.050 0.050 0.065 0.189 0.084 0.033
∆MqT 0.065 0.024 0.067 0.073 0.015 0.005 0.011
MP 2.382 2.296 3.966 4.731 1.091 1.474 0.260
∆MP 0.207 0.121 0.245 0.241 0.156 0.073 0.106
MR -2.274 -1.874 -3.832 -4.474 -2.541 -2.686 -1.801
∆MR 0.664 0.542 1.097 1.279 0.753 0.758 0.545

NTMEs with gA=1.254 in pnQRPA by (a) Muto et al.35 and (b) Šimkovic et al.36

MωF (a) -1.218 -1.047 -0.867 -1.630
(b) -1.117 -2.076 -2.015 -1.410

MqF (a) -1.161 -1.054 -0.860 -1.592
(b) -0.804 -1.588 -1.565 -0.995

MωGT (a) 1.330 3.011 2.442 4.206
(b) 2.088 4.159 4.436 3.091

MqGT (a) -1.145 1.999 1.526 2.485
(b) 1.026 2.389 2.878 1.746

MqT (a) -0.823 -0.583 -0.574 -1.148
(b) -0.200 -0.329 -0.281 -0.252

MP (a) 1.182 -0.483 -0.387 0.998
MR (a) 4.528 4.371 3.736 7.005

Table 5. Average nuclear structure factors Cmm, Cmλ, Cmη , Cλλ, Cηη and Cλη for the
0νβ−β− decay of 96Zr, 100Mo, 110Pd, 130Te and 150Nd isotopes.

Cαβ
96Zr 100Mo 110Pd 130Te 150Nd

Cmm 4.37×10−13 1.62×10−12 6.42×10−13 6.09×10−13 1.32×10−12

Cmλ -2.26×10−13 -8.45×10−13 -2.48×10−13 -2.69×10−13 -6.85×10−13

Cmη 5.02×10−11 1.80×10−10 9.14×10−11 6.97×10−11 1.05×10−10

Cλλ 1.51×10−12 4.76×10−12 8.21×10−13 1.21×10−12 4.55×10−12

Cηη 1.15×10−8 3.52×10−8 1.45×10−8 1.19×10−8 1.89×10−8

Cλη -1.54×10−12 -4.63×10−12 -7.76×10−13 -1.10×10−12 -4.08×10−12

that the maximum uncertainty in MωF,qF , MωGT,qGT and MP is about 15% but
for 150Nd, in which the standard deviation ofMP is about 40%. In 94Zr, 100Mo, and
110Pd isotopes, the NTMEs MqT are quite uncertain due to change of sign in the
case of PQQHH1, PQQHH2, and PQQ2 parametrizations. The maximum uncer-
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• Orders of magnitude larger with QRPA calculations 
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M1 M2 M3 M4 M5 M
�

M
⌘

M6 M7 M 0
⌘

PHFB[14] 0.151 0.027 -0.002 -0.049 -0.004 0.002 0.061 0.074 0.042 0.001
Baseline 0.705 -0.253 -0.046 -0.153 -0.048 0.150 0.469 0.527 -1.270 1.519
N

max

= 5 0.629 -0.208 -0.014 -0.124 -0.069 0.151 0.438 0.661 -1.369 1.688
N

max

= 7 0.640 -0.256 -0.048 -0.145 -0.063 0.121 0.439 0.643 -1.251 1.564
w/o src 0.701 -0.234 -0.049 -0.154 -0.051 0.128 0.451 0.485 -1.182 1.410

Argonne src 0.705 -0.250 -0.046 -0.153 -0.048 0.149 0.467 0.519 -1.261 1.505
L.O. 0.749 -0.347 -0.051 -0.154 -0.041 0.228 0.540 0.823 -1.756 2.152

w/o F (q2) 0.695 -0.241 -0.047 -0.154 -0.050 0.136 0.457 0.529 -1.272 1.521
Closure Energy 0.696 -0.267 -0.043 -0.144 -0.041 0.177 0.472 0.522 -1.247 1.493

gT=0
pp

= 0 0.611 -0.169 -0.054 -0.161 -0.065 0.029 0.376 0.540 -1.240 1.496
gT=1
pp

= 0 0.795 -0.246 -0.034 -0.156 -0.034 0.206 0.516 0.501 -1.437 1.665
g
A

= 0.75 0.695 -0.241 -0.047 -0.154 -0.050 0.008 0.317 0.529 -1.272 1.249

TABLE I: The NME values for 0⌫��(2+). Here the baseline calculation is explained in text. And also various approximations
and parameters will be discussed in text.

FIG. 1: (Color online) The dependence of the NMEs on the model space for di↵erent multipoles. Here N
max

refers to the
largest principle quantum number for the outermost shell.

tude larger, although the relative ratios among di↵erent
NMEs (M1�M5) are similar. Of these NMEs, M1 is the
largest. The second largest is M2 and third is M4. M3

and M5 are relatively small and hence less important.
For M

�

, if we multiply the NMEs with the correspond-
ing C

�

’s, we find that M1 and M2 contributes coherently,

they are then cancelled by M4, while the rest two NME’s
contributes less than 10%. For M

⌘

, all these three NMEs
gives additive contributions, this makes M

⌘

about three
times larger than M

�

. This is the reason, why M
⌘

is
larger than M

�

as also observed in [14]. However, in
their calculation, the strong cancellation gives a negligi-
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Figure 3. Comparison of the NMEs obtained using the calculations of refs. [76] (blue triangles), [32]
(red squares), [83] (green circles) and [84, 85] (orange diamonds). To show the different NMEs,
Mi, on a similar scale we arbitrarily normalized the calculations to the results of ref. [76], i.e.
R(Mi) = Mi/M

[76]
i . For MPS we show the absolute value of the ratio. In this case, ref. [32] finds a

negative ratio, while for refs. [83] and [84, 85] we find positive values. The same finding holds for
Mme,L shown in figure 4.
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the same as in figure 3.
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renormalized as much as in 2νββ is of much debate. This
problem is currently being addressed both experimentally
by employing single and double charge exchange reactions
[71,72] and, theoretically, by using effective field theories
to estimate the effect of non-nucleonic degrees of freedom
[73]. Quenching of gA arises from the omission of non-
nucleonic degrees of freedom and from the limited model
space in which the calculations are done. The former effect
is not expected to be present in 0νββ decay since the
average neutrino momentum is ∼100 MeV, while in 2νββ

decay is of the order of 1–2 MeV. The latter effect instead
appears both in 0νββ and 2νββ decays. This consideration
suggests to use an effective value of geffA ¼ 1.0, in between
the free value gA ¼ 1.269 and the value observed in 2νββ
decay, gA ∼ 0.6. We henceforth use this value.

2. Comparison with earlier results

From the NMEs in Tables II and III one can calculate the
NMEs for the standard mass mechanism, Mν and heavy

TABLE III. NMEs for the standard light neutrino exchange 0νββ decay mechanism evaluated in the IBM-2 as
described in the text and to be used in Eq. (36).

Isotope MF MAA
GT M0AP

GT M0AP
T M0WW

GT M0WW
T M00PP

GT M00PP
T

76Ge −0.780 6.062 0.036 −0.010 0.089 −0.035 3.4 × 10−4 −1.4 × 10−4
82Se −0.667 4.928 0.030 −0.010 0.073 −0.034 4.1 × 10−4 −1.3 × 10−4
96Zr −0.361 4.317 0.027 0.009 0.065 0.032 3.1 × 10−4 1.2 × 10−4
100Mo −0.511 5.553 0.038 0.012 0.096 0.041 4.7 × 10−4 1.6 × 10−4
110Pd −0.425 4.432 0.032 0.009 0.080 0.036 3.9 × 10−4 1.4 × 10−4
116Cd −0.335 3.173 0.023 0.005 0.058 0.023 2.9 × 10−4 8.7 × 10−5
124Sn −0.572 3.370 0.021 −0.005 0.053 −0.018 2.5 × 10−4 −7.5 × 10−5
128Te −0.718 4.321 0.027 −0.005 0.067 −0.023 3.1 × 10−4 −9.1 × 10−5
130Te −0.651 3.894 0.024 −0.006 0.061 −0.021 2.8 × 10−4 −8.3 × 10−5
134Xe −0.686 4.211 0.026 −0.005 0.064 −0.023 3.0 × 10−4 −8.3 × 10−5
136Xe −0.522 3.203 0.019 −0.005 0.048 −0.016 2.2 × 10−4 −6.3 × 10−5
148Nd −0.363 2.517 0.020 0.005 0.053 0.014 2.6 × 10−4 5.3 × 10−5
150Nd −0.507 3.753 0.032 0.005 0.083 0.027 4.1 × 10−4 9.7 × 10−5
154Sm −0.340 2.984 0.022 0.005 0.056 0.018 2.7 × 10−4 6.9 × 10−5
160Gd −0.415 4.224 0.030 0.009 0.074 0.027 3.6 × 10−4 1.1 × 10−4
198Pt −0.329 2.270 0.021 0.005 0.054 0.014 2.7 × 10−4 6.1 × 10−5
232Th −0.444 4.169 0.032 0.009 0.079 0.032 3.9 × 10−4 1.2 × 10−4
238U −0.525 4.962 0.038 0.009 0.093 0.036 4.6 × 10−4 1.4 × 10−4

TABLE II. NMEs for short-range 0νββ decay mechanisms evaluated in the IBM-2 as described in the text and to be used in
Eqs. (30)–(34). The values of the last four NMEs in Table I are not listed as they are derived from other NMEs as indicated therein.

Isotope MF MAA
GT MAT1

GT MT1T1

GT M0WW
GT M0WW

T M0AP
GT M0AP

T M0PT1

GT M0PT1
T M0P0P0

GT M0P0P0

T M00PP
GT M00PP

T

76Ge −48.89 170.0 174.3 173.5 −2.945 −6.541 2.110 −1.310 2.255 −1.183 0.798 −0.271 0.028 −0.022
82Se −41.22 140.7 144.3 143.6 −2.456 −6.206 1.758 −1.249 1.878 −1.183 0.660 −0.259 0.024 −0.021
96Zr −35.31 124.3 128.5 128.8 −3.116 5.436 1.523 1.090 1.652 0.984 0.613 0.228 0.020 0.019
100Mo −51.96 181.9 188.1 188.6 −4.590 8.055 2.273 1.590 2.464 1.128 0.910 0.317 0.029 0.027
110Pd −43.52 151.2 156.5 157.0 −3.945 6.816 1.892 1.356 2.055 1.223 0.762 0.271 0.024 0.023
116Cd −32.45 110.5 114.6 115.2 −3.069 4.222 1.374 0.843 1.497 0.760 0.565 0.169 0.017 0.015
124Sn −33.19 104.2 106.7 106.1 −1.701 −3.655 1.321 −0.723 1.407 −0.651 0.489 −0.146 0.018 −0.012
128Te −41.82 131.7 134.9 134.1 −2.439 −4.519 1.667 −0.890 1.776 −1.433 0.617 −0.178 0.023 −0.015
130Te −38.05 119.7 122.6 121.9 −1.951 −4.105 1.514 −0.807 1.613 −0.726 0.561 −0.160 0.021 −0.014
134Xe −39.45 124.7 127.8 127.2 −2.111 −4.191 1.564 −0.823 1.669 −0.741 0.585 −0.163 0.021 −0.014
136Xe −29.83 94.18 96.56 96.09 −1.625 −3.158 1.177 −0.620 1.257 −0.558 0.442 −0.123 0.016 −0.011
148Nd −31.71 103.0 106.0 105.8 −2.145 2.557 1.346 0.510 1.445 0.460 0.508 0.104 0.018 0.009
150Nd −30.18 100.0 103.2 103.1 −2.230 2.955 1.292 0.581 1.392 0.523 0.497 0.116 0.017 0.010
154Sm −31.83 107.1 110.7 110.9 −2.618 3.397 1.356 0.668 1.467 0.601 0.536 0.135 0.018 0.012
160Gd −41.43 142.9 148.0 148.6 −3.808 5.231 1.776 1.023 1.931 0.920 0.722 0.205 0.023 0.018
198Pt −31.87 104.4 108.4 109.0 −2.992 3.172 1.334 0.626 1.454 0.564 0.546 0.119 0.017 0.011
232Th −44.04 154.2 159.7 160.3 −4.116 6.146 1.900 1.185 2.067 1.063 0.783 0.230 0.024 0.021
238U −52.48 183.1 189.7 190.5 −4.981 7.206 2.255 1.393 2.456 1.251 0.932 0.272 0.029 0.024

DEPPISCH, GRAF, IACHELLO, and KOTILA PHYS. REV. D 102, 095016 (2020)
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2Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

3Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Nikolsdorfer Gasse 18, 1050 Wien, Austria
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We present a novel mode of neutrinoless double-β decay with emission of a light Majoron-like scalar
particle ϕ. We assume it couples via an effective seven-dimensional operator with a (V þ A) lepton current
and (V " A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino
mass. We calculate the total double-β decay rate and determine the fully differential shape for this mode.
We find that future double-β decay searches are sensitive to scales of the order ΛNP ≈ 1 TeV for the
effective operator and a light scalar mϕ < 0.2 MeV, based on ordinary double-β decay Majoron searches.
The angular and energy distributions can deviate considerably from that of two-neutrino double-β decay,
which is the main background. We point out possible ultraviolet completions where such an effective
operator can emerge.

DOI: 10.1103/PhysRevLett.122.181801

Introduction.—Double-β decay processes are sensitive
probes of physics beyond the standard model (SM).
The SM process of two-neutrino double-β (2νββ) decay
is the rarest process ever observed with half-lives of order
T2νββ
1=2 ∼ 1021 yr. Neutrinoless double-β (0νββ) decay, with

no observation of any missing energy, is clearly the most
important mode beyond the SM as it probes the Majorana
nature and mass mν of light neutrinos, with current
experiments sensitive as T0νββ

1=2 ∼ ð0.1 eV=mνÞ2 × 1026 yr.
In general, it is a crucial test for any new physics scenario
that violates lepton number by two units.
On the other hand, one or more exotic neutral particles

may also be emitted, with a signature of anomalous missing
energy beyond that expected in 2νββ decay. Awell studied
set of theories involve the emission of a scalar particle,
called Majoron J. The first such proposed Majoron was a
Goldstone boson associated with the spontaneous breaking
of lepton number symmetry [1,2], coupling to a neutrino ν
as gJννJ, cf. Fig. 1 (left). Current searches have a
sensitivity of the order T0νββJ

1=2 ∼ ð10−5=gJÞ2 × 1024 yr.
The termMajoron has been used in a wider sense, implying

just a charge-neutral scalar particle (Goldstone boson or
not) or vector particle [3]. Originally considered to be
massless, it may also be a light particle [4–6] that can
potentially be a dark matter candidate [7–9]. Searches for
extra particles in double-β decay are crucial in under-
standing neutrinos. Most importantly, violation of lepton
number by two units and thus the Majorana nature of
neutrinos can only be firmly established in the case of
0νββ decay.
Not all such emission modes have been discussed in the

literature. Existing experimental searches so far focus on
the emission of one or two Majorons originating from the
intermediate neutrino exchanged in the process. The differ-
ent Majoron scenarios have been classified into several
categories, all of which assume SM (V − A) charged
currents with the electrons and quarks. In this Letter, we

FIG. 1. Feynman diagrams for ordinary 0νββJ Majoron decay
(left), 0νββϕ decay triggered by an effective operator of the form
Λ−3
NPðūOdÞðēOνÞϕ (center), and possible ultraviolet completion

of the latter in a left-right symmetric model (right).
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Majorons and sterile neutrinos [38]. In Ref. [38], no difference
has been observed in the effects due to the FNS either by
employing dipole form factors or form factors taking the
structure of nucleons into account.

The present work is an extension of estimating uncer-
tainties in NTMEs for the (β−β−χ )0ν decay modes within
mechanisms involving new Majoron models. Results are
presented for 94,96Zr, 100Mo, 128,130Te, and 150Nd isotopes,
calculated within the PHFB approach by employing four
different parametrizations of pairing plus multipolar effective
two-body interaction, dipole form factor, and three different
parametrizations of Jastrow SRC. The effects due to the FNS
as well as the SRC vis-à-vis the radial evolution of NTMEs
and deformation are also investigated.

II. THEORETICAL FRAMEWORK

The detailed theoretical formalism to calculate the half-lives
of the (β−β−χ )0ν decay modes in nine Majoron models [12]
have been discussed by Hirsch et al. [16]. Hence, an outline of
the required theoretical formalism is given in the following for
the clarity in notations used in the present work. The inverse
half-life T

(0νχ )
1/2 for the 0+ → 0+ transition of (β−β−χ )0ν

decay is given by

[
T

(0νχ )
1/2 (0+ → 0+)

]−1 =
∣∣⟨gα⟩

∣∣mG(χ )
α

∣∣M (χ )
α

∣∣2
. (1)

The index α indicates the effective coupling constants gα ,
phase-space factors G(χ )

α , and NTMEs M (χ )
α for different

Majoron models. The index m takes values 2 and 4 for the
(β−β−φ)0ν and (β−β−φφ)0ν decay modes, respectively. The
symbol χ denotes modes involving a single Majoron, φ, or two
Majorons, φφ. The phase-space factors are calculated using

G(χ )
α = a(χ )

α

∫ T +1

1
F0(Zf ,ε1)p1ε1dε1

×
∫ T +2−ε1

1
(T + 2 − ε1 − ε2)nF0(Zf ,ε2)p2ε2dε2.

(2)

In Table I, we present the prefactors a(χ )
α and NTMEs M (χ )

α

corresponding to different Majoron models.

TABLE I. Different Majoron models according to Bamert
et al. [12].

Modes Case n Prefactors aα NTME

ββφ IB, IC, IIB 1
2(GF gA)4m9

e

256π 7 ln (2) (meR)2 M (χ )
mν

ββφ IIC, IIF 3
2(GF gA)4m9

e

64π 7 ln (2) (meR)2 M
(χ )
CR

ββφφ ID, IE, IID 3
2(GF gA)4m9

e

12288π 9 ln (2) (meR)2 M
(χ )
ω2

ββφφ IIE 7
2(GF gA)4m9

e

215040 π 9 ln (2) (meR)2 M
(χ )
ω2

In the closure approximation, the NTMEs M (χ )
α are defined

as

M (χ )
mν

=
∑

n,m

〈
0+

F

∥∥∥∥

[
− HF (rnm)

g2
A

+ σ n · σmHGT (rnm)

+ SnmHT (rnm)
]
τ+
n τ+

m

∥∥∥∥0+
I

〉
, (3)

M
(χ )
CR =

(
gV

gA

)(
fW

3

) ∑

n,m

〈
0+

F

∥∥∥∥σ n · σmHR(r,A)τ+
n τ+

m

∥∥∥∥0+
I

〉
,

(4)

M
(χ )
ω2 =

∑

n,m

〈
0+

F

∥∥∥∥

[(
gV

gA

)2

− σ n.σm

]
Hω2 (r,A)τ+

n τ+
m

∥∥∥∥0+
I

〉
.

(5)

The NTMEs M
(χ )
mν

of the classical Majoron models are the
same as the NTMEs M (0ν) of the light Majorana neutrino mass
mechanism and have been calculated in Ref. [38]. The neutrino
potentials HR(r,A) and Hω2 (r,A) required for the calculation
of the other two matrix elements M

(χ )
CR and M

(χ )
ω2 , respectively,

are defined as

HR(r,A) = 1
4π2M

∫
eiqr

[
A + 2q

q(q + A)2

](
*2

q2 + *2

)4

d3q,

(6)

Hω2 (r,A) = m2
eR

16π2

∫
eiqr

[
3A

2 + 9Aq + 8q2

q3(q + A)3

]

×
(

*2

q2 + *2

)4

d3q, (7)

with gV = 1.0, gA = 1.254, fW = µp − µn = 4.70 [54], and
* = 0.850 GeV. Further, the central part of the recoil term
is only retained in HR(r,A) following Hirsch et al. [16]. The
nuclear radius is taken to be R = R0A

1/3 with R0 = 1.2 fm.
The average energy of the nuclear intermediate states is A =
1.12 A1/2 MeV [55].

The model-specific uncertainties associated with the
NTMEs M (χ )

α for the (β−β−χ )0ν decay modes are evaluated
statistically by estimating the mean and standard deviation
of a set of 12 NTMEs, calculated in the PHFB approach [37]
with the consideration of four different parametrizations of the
effective two-body interaction and three different parametriza-
tions of the SRC. The details about the four different
parametrizations of the effective two-body interaction have
already been given in Refs. [37–39]. By considering a form of
Jastrow short-range correlations given in Ref. [21], the three
different parametrizations of the SRC for the Miller-Spencer
parametrization, Argonne NN , and CD-Bonn potentials, are
denoted by SRC1, SRC2, and SRC3, respectively.

III. RESULTS AND DISCUSSIONS

In the present work, the NTMEs M
(χ )
CR and M

(χ )
ω2 are

calculated employing the same wave functions as those used
in Refs. [37–39]. The reliability of the wave functions has
already been discussed in Ref. [37]. To exhibit the role of the
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TABLE IV. Average values for NTME M
(χ )
K and uncertainty "M

(χ )
K for the (β−β−χ )0ν decay of 94,96Zr, 100Mo, 128,130Te, and 150Nd

isotopes. Both bare and quenched values of gA are considered. Case I and Case II denote calculations with and without SRC1, respectively.

Nuclei gA M
(χ )
mν

M
(χ )
CR M

(χ )
CR

M
(χ )
ω2 × 103 M

(χ )
ω2

×103±1

Case I Case II Case I Case II [16] Case I Case II [16]

94 Zr 1.254 3.873 ± 0.373 4.071 ± 0.246 0.158 ± 0.015 0.165 ± 0.010 4.429 ± 0.560 4.500 ± 0.562
1.0 4.322 ± 0.421 4.550 ± 0.270 0.198 ± 0.018 0.207 ± 0.012 4.782 ± 0.557 4.860 ± 0.557

96 Zr 1.254 2.857 ± 0.264 3.021 ± 0.119 0.115 ± 0.010 0.121 ± 0.004 3.198 ± 0.240 3.256 ± 0.229
1.0 3.204 ± 0.307 3.393 ± 0.141 0.144 ± 0.013 0.152 ± 0.006 3.414 ± 0.299 3.478 ± 0.290

100 Mo 1.254 6.250 ± 0.638 6.575 ± 0.452 0.246 ± 0.024 0.258 ± 0.016 0.16 6.386 ± 0.709 6.499 ± 0.711 ∼1.0
1.0 7.035 ± 0.746 7.410 ± 0.538 0.308 ± 0.029 0.324 ± 0.020 6.923 ± 0.851 7.047 ± 0.856

128 Te 1.254 3.612 ± 0.395 3.810 ± 0.286 0.130 ± 0.014 0.137 ± 0.010 0.14 3.732 ± 0.456 3.795 ± 0.457 ∼1.0
1.0 4.088 ± 0.450 4.316 ± 0.321 0.163 ± 0.018 0.172 ± 0.013 4.161 ± 0.518 4.230 ± 0.519

130 Te 1.254 4.046 ± 0.497 4.254 ± 0.406 0.143 ± 0.016 0.151 ± 0.012 0.12 4.330 ± 0.892 4.395 ± 0.908 ∼1.0
1.0 4.569 ± 0.568 4.808 ± 0.461 0.180 ± 0.020 0.189 ± 0.016 4.819 ± 1.003 4.890 ± 1.021

150 Nd 1.254 2.826 ± 0.430 2.957 ± 0.408 0.094 ± 0.014 0.099 ± 0.013 0.15 3.042 ± 0.496 3.081 ± 0.508 ∼1.0
1.0 3.193 ± 0.492 3.345 ± 0.466 0.118 ± 0.017 0.124 ± 0.016 3.332 ± 0.572 3.375 ± 0.586

"M
(χ)
CR in M

(χ)
CR turn out to be about 4% –13% (8%–15%) to

be compared with the uncertainties "M
(χ )
mν

in M
(χ )
mν

, which
are about 4% –14% (9%–15%). The uncertainties in both
the NTMEs M

(χ )
mν

and M
(χ )
CR are of the same order, reflecting

that the corresponding operators are of identical form. In
addition, the statistically estimated theoretical uncertainties
"M

(χ)
ω2 in NTME M

(χ )
ω2 turn out to be 7.0%–21% (7.5%–21%)

without (with) SRC1, exhibiting a negligible dependence on
the SRC. In Table IV, we also present the NTMEs M

(χ )
CR and

M
(χ )
ω2 calculated by Hirsch et al. [16] within the pn-QRPA by

employing the G matrix of the Paris potential for comparison.
The maximum difference between the NTMEs calculated
within the PHFB and pn-QRPA approaches is about a factor of
2. However, the impact of this difference on the total half-life
T

(0νχ )
1/2 is not of much importance so far as conclusions of the

present work are concerned.

C. Nuclear sensitivities and limits on effective
Majoron-neutrino couplings

Recently, the phase-space factors G(χ )
α for the 0+ →0+

transition have been calculated by Kotila et al. [57] with gA =
1.269. In the present work, we rescale them for gA = 1.254
and the phase-space factors for 94Zr are calculated following
Hirsch et al. [16]. There is a large difference in the phase-
space factors within classical and new Majoron models. In
Table V, we present the nuclear sensitivities, which are related
to sensitivities of Majoron-neutrino couplings ⟨gα⟩, defined
by [58]

ξ (χ ) = 1010
√

G
(χ )
α

∣∣M (χ )
α

∣∣, (8)

with an arbitrary normalization factor 1010 so that the nuclear
sensitivities for the (β−β−φφ)0ν decay modes are of order
one. It can be noticed that the nuclear sensitivities for the
(β−β−χ )0ν decay of 150Nd, 100Mo, 96Zr, 130Te, 94Zr, and
128Te isotopes are in decreasing order of their magnitudes.
In addition, the nuclear sensitivities of the promising nuclei

for the classical Majoron models are larger than those of new
Majoron models by about a factor of 103−4.

In columns 7–10 of Table VI, the extracted limits on the
effective Majoron-neutrino coupling constants ⟨gα⟩ from the
largest observed limits on half-lives T

(0νχ )
1/2 of 94,96Zr, 100Mo,

128Te, 130Te and 150Nd isotopes are displayed. The most
stringent extracted limit on ⟨gα⟩ < (2.00 − 2.79) × 10−5 is
obtained for 100Mo within classical Majoron models. Due
to smaller NTMEs and phase-space factors, the same limits
⟨gα⟩ within new Majoron models are larger than those of
classical Majoron models by a factor of 104−5. Because the
sensitivities of the ongoing double-β-decay experiments to
the new Majoron models are quite weak, a comparison of the
expected half-lives T

(0νχ )
1/2 within classical and new Majoron

models is of experimental interest. In Table VII, the predicted
half-lives T

(0νχ )
1/2 with ⟨gα⟩ = 10−6 and gA = 1.254(gA = 1.0)

are presented for spectral indices n = 1 and 3 of (β−β−φ)0ν

and n = 3 and 7 of (β−β−φφ)0ν decay modes. The smallest
and largest magnitudes of half-lives correspond to 150Nd and
128Te isotopes, respectively. It is quite clear that in the classical
Majoron models, the half-lives T

(0νχ )
1/2 for the potential nuclei

are within the reach of planned experiments and none of the
new Majoron models can produce an observable decay rate in
the near future.

TABLE V. Nuclear sensitivities for the (β−β−φ)0ν and
(β−β−φφ)0ν decay modes in different Majoron models.

Nuclei ξ (χ )
α (ββφ) ξ (χ )

α (ββφφ)

n = 1 n = 3 n = 3 n = 7

94Zr 0.147 × 103 0.162 0.007 0.004
96Zr 1.429 × 103 3.918 0.170 0.579
100Mo 2.528 × 103 6.325 0.253 0.728
128Te 0.105 × 103 0.068 0.003 0.001
130Te 1.359 × 103 2.913 0.124 0.262
150Nd 2.589 × 103 7.124 0.310 1.124
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Results

• Corrections to double beta decay operators 

• Contributions from chiral two-body currents 

• Modifications of operators in shell model
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FIG. 1. Second-order diagrams included in the perturbative ex-
pansion of !̂. The dashed lines indicate the bare operator !, and the
wavy lines indicate the two-body potential Vlow-k (see text for details).

Then, the χn operators [41] are written as

χ0 = (!̂0 + H.c.) + !̂00, (10)

χ1 = (!̂1Q̂ + H.c.) + (!̂01Q̂ + H.c.), (11)

χ2 = (!̂1Q̂1Q̂ + H.c.) + (!̂2Q̂Q̂ + H.c.)

+ (!̂02Q̂Q̂ + H.c.) + Q̂!̂11Q̂,

· · · , (12)

where !̂m, !̂mn have the following expressions:

!̂m = 1
m!

dm!̂(ϵ)
dϵm

∣∣∣∣
ϵ=ϵ0

, (13)

!̂mn = 1
m!n!

dm

dϵm
1

dn

dϵn
2
!̂(ϵ1; ϵ2)

∣∣∣∣
ϵ1=ϵ0,ϵ2=ϵ0

. (14)

As in our previous work [48], where we calculated ef-
fective electromagnetic transition and β decay operators, we
derived !eff , which accounts for the truncation to the reduced
SM space, arresting the χn series to the χ2 term. It is worth
pointing out that χ3 depends on the first, second, and third
derivatives of !̂0 and !̂00, and on the first and second
derivatives of the Q̂ box [see Eq. (12)], so we estimate the
χ3 contribution being at least one order of magnitude smaller
than the χ2 contribution.

The calculation of χ0, χ1, and χ2 is performed by carrying
out a perturbative expansion of !̂0 and !̂00, including dia-
grams up to third order in perturbation theory, consistently
with the perturbative expansion of the Q̂ box. In Fig. 1 we
report all the two-body !0 diagrams up to second order, the
bare operator ! being represented with a dashed line. The
first-order (Vlow-k − U ) insertion, represented by a circle with
a cross inside, arises because of the presence of the −U term
in the interaction Hamiltonian H1 (see, for example, Ref. [42]
for details).

We point out that diagrams (A)–(D) belong also to the per-
turbative expansion of !eff in Refs. [49,51], where diagrams

p
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m
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FIG. 2. Second-order three-body diagrams which are included
in the perturbative expansion of !̂. As in Fig. 1, the dashed line
indicates the bare operator !, the wavy line indicates the two-body
potential Vlow-k .

(E) and (F) were neglected. The contribution of (Vlow-k − U )-
insertion diagrams, such as (E) and (F), is equal to zero only
under the hypothesis that the HO potential would correspond
to a Hartree-Fock basis for the Vlow-k potential. In a previous
study, we showed that the role of this class of diagrams is
non-negligible to derive Heff , in particular to benchmark the
RSM with ab initio calculations [42].

So far we have presented the derivation of an effective
operator just for a nuclear system with two valence nucleons,
but in the following section we are going to focus on 0νββ
decay of nuclei that, within the shell model, will be described
in terms of a number of valence nucleons that is much larger
than two. For example, double-β decay of 136Xe into 136Te
involves 36 valence nucleons outside the doubly magic 100Sn,
and in such a case the expression of !eff should contain
contributions up to a 36-body term.

At present this is unfeasible, so we include just the leading
terms of these many-body contributions in the perturbative
expansion of !̂, namely, the second-order three-body dia-
grams (a) and (b), that are reported in Fig. 2. For the sake of
simplicity, for each topology only one of the diagrams which
correspond to the permutation of the external lines is drawn.

The two topologies of second-order connected three-
valence-nucleon diagrams, Figs. 2(a) and 2(b), correct the
Pauli-principle violation introduced by the diagrams in
Figs. 2(a’) and 2(b’) when one of the intermediate particle
states is equal to m [64]. This is the so-called “blocking
effect,” which urges one to take into account the Pauli ex-
clusion principle in systems with more than two valence
nucleons [32].

It should be pointed out that the authors of Ref. [51] also
attempted to account for this effect in an approximate way
by weighting the intermediate model-space-particle lines that
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Then, the χn operators [41] are written as
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+ (!̂02Q̂Q̂ + H.c.) + Q̂!̂11Q̂,

· · · , (12)

where !̂m, !̂mn have the following expressions:
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As in our previous work [48], where we calculated ef-
fective electromagnetic transition and β decay operators, we
derived !eff , which accounts for the truncation to the reduced
SM space, arresting the χn series to the χ2 term. It is worth
pointing out that χ3 depends on the first, second, and third
derivatives of !̂0 and !̂00, and on the first and second
derivatives of the Q̂ box [see Eq. (12)], so we estimate the
χ3 contribution being at least one order of magnitude smaller
than the χ2 contribution.

The calculation of χ0, χ1, and χ2 is performed by carrying
out a perturbative expansion of !̂0 and !̂00, including dia-
grams up to third order in perturbation theory, consistently
with the perturbative expansion of the Q̂ box. In Fig. 1 we
report all the two-body !0 diagrams up to second order, the
bare operator ! being represented with a dashed line. The
first-order (Vlow-k − U ) insertion, represented by a circle with
a cross inside, arises because of the presence of the −U term
in the interaction Hamiltonian H1 (see, for example, Ref. [42]
for details).

We point out that diagrams (A)–(D) belong also to the per-
turbative expansion of !eff in Refs. [49,51], where diagrams
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FIG. 2. Second-order three-body diagrams which are included
in the perturbative expansion of !̂. As in Fig. 1, the dashed line
indicates the bare operator !, the wavy line indicates the two-body
potential Vlow-k .

(E) and (F) were neglected. The contribution of (Vlow-k − U )-
insertion diagrams, such as (E) and (F), is equal to zero only
under the hypothesis that the HO potential would correspond
to a Hartree-Fock basis for the Vlow-k potential. In a previous
study, we showed that the role of this class of diagrams is
non-negligible to derive Heff , in particular to benchmark the
RSM with ab initio calculations [42].

So far we have presented the derivation of an effective
operator just for a nuclear system with two valence nucleons,
but in the following section we are going to focus on 0νββ
decay of nuclei that, within the shell model, will be described
in terms of a number of valence nucleons that is much larger
than two. For example, double-β decay of 136Xe into 136Te
involves 36 valence nucleons outside the doubly magic 100Sn,
and in such a case the expression of !eff should contain
contributions up to a 36-body term.

At present this is unfeasible, so we include just the leading
terms of these many-body contributions in the perturbative
expansion of !̂, namely, the second-order three-body dia-
grams (a) and (b), that are reported in Fig. 2. For the sake of
simplicity, for each topology only one of the diagrams which
correspond to the permutation of the external lines is drawn.

The two topologies of second-order connected three-
valence-nucleon diagrams, Figs. 2(a) and 2(b), correct the
Pauli-principle violation introduced by the diagrams in
Figs. 2(a’) and 2(b’) when one of the intermediate particle
states is equal to m [64]. This is the so-called “blocking
effect,” which urges one to take into account the Pauli ex-
clusion principle in systems with more than two valence
nucleons [32].

It should be pointed out that the authors of Ref. [51] also
attempted to account for this effect in an approximate way
by weighting the intermediate model-space-particle lines that

044315-4

Coraggio 20’

Menendez 11’, Engel 14’, Wang 18’

CALCULATION OF THE NEUTRINOLESS … PHYSICAL REVIEW C 101, 044315 (2020)

2 4 6 8 10 12 14 16
Nmax

1.5

2

2.5

3

3.5

4

4.5

5

M
0

76Ge 0
0 + 1
0 + 1 + 2

FIG. 4. M0ν for the 76Ge → 76Se decay as a function of Nmax.
The red diamonds correspond to a truncation of χn expansion up to
χ0, blue squares up to χ1, and black dots up to χ2.

as a fine-tuning of TBME obtained from the realistic SM
Heff s [40]. The modifications have been made to fit to some
specific spectroscopic data of nuclei in the p f , f5/2 pg9/2, and
g7/2dsh11/2 regions, as well as single-particle properties in
the same regions to determine the SP energies (details can be
found in the above-mentioned papers and references therein).

As described in Sec. II, our Heff s have been derived from a
realistic VNN and their matrix elements have been not modified
to improve the agreement with experiment. As can be seen
from inspection of Fig. 3, there is a general agreement among
the different calculations, which is linked to a common quality
of the different Heff s to reproduce satisfactorily a large amount
of spectra in these mass regions.

We shift now the focus to the results of the calculations
obtained by employing the effective decay operator #eff ,
which accounts for the truncation of the Hilbert space, the
SRC, and the Pauli-blocking effect as well.

First, we report the convergence properties with respect to
the number of intermediate states included in the perturbative
expansion of #eff , and the truncation of the order of χn
operators.

In Fig. 4 the calculated values of M0ν for the 76Ge → 76Se
decay are reported as a function of the maximum allowed
excitation energy of the intermediate states expressed in terms
of the oscillator quanta Nmax, and for contributions up to the
χ2 operator. The plot shows that the results are substantially
convergent from Nmax = 12 on and the contributions from χ1
are crucial while those from χ2 are almost negligible.

It is worth pointing out that χ3 depends on the first, second,
and third derivatives of #̂0 and #̂00, as well as on the first and
second derivatives of the Q̂ box [see Eq. (12)], so we estimate
the χ3 contribution as being at least one order of magnitude
smaller than the χ2 contribution.

On the basis of the above analysis, the results we report
in this section are all obtained including in the perturbative
expansion up to third-order diagrams, whose number of inter-
mediate states corresponds to oscillator quanta up to Nmax =
14 and up to χ2 contributions.

Now, we consider the order-by-order convergence behav-
ior by reporting in Figs. 5–9 the calculated values of M0ν ,

1 2 3
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M
0

 48Ca

Pade` [2|1]

M0

M0
GT
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F

FIG. 5. M0ν for the 48Ca → 48Ti decay as a function of the
perturbative order. The green triangles correspond to M0ν

F , the blue
squares to M0ν

GT, and the black dots to the full M0ν .

M0ν
GT, and M0ν

F for 48Ca, 76Ge, 82Se, 130Te, and 136Xe 0νββ
decay, respectively, from first up to third order in perturbation
theory. We compare the order-by-order results also with their
Padé approximant [2|1] as an indicator of the quality of the
perturbative behavior [73]. It should be pointed out that the
same scale has been employed in all the figures.

First of all, we observe that the perturbative behavior
is dominated by the Gamow-Teller component, since the
renormalization procedure does not significantly affect the
Fermi matrix element M0ν

F . We recall that the perturba-
tive behavior of the single-β decay operator provides a
difference between the M2ν values calculated at second and
third order in perturbation theory which does not exceed
10% [61]. Here, we observe a less satisfactory perturbative
behavior for our calculation of M0ν , the difference between
second- and third-order results being about 15% and 30% for
76Ge, 82Se, and 130Te, 136Xe 0νββ decays, respectively.

The calculation of M0ν for 48Ca 0νββ decay exhibits the
worst perturbative behavior. In such a case, we observe a
difference between the second- and third-order results which
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FIG. 6. Same as in Fig. 5, but for the 76Ge → 76Se decay.
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NME from experiments

• Are there any observables which 
can be related to the NMEs? 

• Early attempts are to relate the 
Fermi NME with double Fermi 
transition or coulomb excitations 

•
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form M0ν = ⟨0f |Ŵ 0ν |0i⟩ of the m.e. of a two-body scalar
operator Ŵ 0ν between the parent and daughter ground states
|0i⟩ and |0f ⟩, respectively.1 The total 0νββ-decay operator
Ŵ 0ν ≡ g2

AŴ 0ν
GT − g2

V Ŵ 0ν
F is the sum of the Gamow-Teller and

Fermi transition operators [7]:

Ŵ 0ν =
∑

ab

Pν(rab)
(
g2

Aσ a · σ b − g2
V

)
τ−
a τ−

b . (1)

Here, the vector and axial vector coupling constants are
gV = 1 and gA = 1.25, respectively, and Pν(rab ≡ |r⃗a − r⃗b|)
is the neutrino potential which in the simplest Coulomb
approximation is just reciprocal of the distance between the
nucleons: Pν(rab) = 1

rab
(for the sake of simplicity we have

taken out the nuclear radius R from the usual definition of
Pν [7]). In this approximation

Ŵ 0ν
F =

∑

ab

Pν(rab)τ−
a τ−

b = 1
e2

[T̂ −, [T̂ −, V̂C]], (2)

where T̂ − =
∑

a τ−
a is the isospin lowering operator, and V̂C =

e2

8

∑
a ̸=b

(1−τ
(3)
a )(1−τ

(3)
b )

rab
is the operator of Coulomb interaction

between protons. Actually, only the isotensor component

of the Coulomb interaction V̂ t
C = e2

8

∑
a ̸=b

T
(2)
ab

rab
, with T

(2)
ab ≡

τ (3)
a τ

(3)
b − τ aτ b

3 , survives in the double commutator (2). This
isotensor Coulomb interaction does contribute to the mean
Coulomb field in the nucleus, but it is easy to see that
any mean-field single-particle operator drops out of the
double commutator (2). Thus, the expression (2) is essentially
determined by the residual (after separating out the mean-field
contribution) two-body isotensor Coulomb interaction.

The total nonrelativistic nuclear Hamiltonian Ĥtot consists
of the total kinetic energy of nucleons and the strong and
Coulomb two-body interactions between them: Ĥtot = T̂ +
Ĥstr + V̂C . Assuming Ĥstr to be exactly isospin-symmetric
[T̂ −, Ĥstr] = 0 (we shall quantify later the accuracy of this
assertion but it is well known that the isospin-breaking terms
in Ĥstr are in fact fairly small [15,16]), one has

Ŵ 0ν
F = 1

e2
[T̂ −, [T̂ −, Ĥtot]], (3)

and, correspondingly [17],

M0ν
F = − 2

e2

∑

s

ω̄s⟨0f |T̂ −|0+
s ⟩⟨0+

s |T̂ −|0i⟩. (4)

Here, the sum runs over all 0+ states of the intermediate
(N − 1, Z + 1) isobaric nucleus, ω̄s = Es − (E0i

+ E0f
)/2

represents the excitation energy of the sth intermediate 0+ state
relative to the mean energy of the ground states of the initial
and final nuclei. To account for the isospin-breaking part of
Ĥstr, δM0ν

F = 1
e2 ⟨0f |[T̂ −, [T̂ −, Ĥstr]]|0i⟩ should be subtracted

from the right-hand side (r.h.s.) of Eq. (4).

1Using closure of the states of the intermediate nucleus A
Z+1ElN−1

which are virtually excited in ββ decay would be an exact procedure
if there were no energy dependence in the 0νββ transition operator. A
weak energy dependence of the operator leads in reality to a “beyond-
closure” correction to the total M0ν of less than 10%.

Among all the intermediate 0+ states, the isobaric analog
state (IAS) dominates the sum (4). In fact, ⟨IAS|T̂ −|0i⟩ ≈√

N − Z is the largest first-leg transition m.e. [a few percent
of the total Fermi strength N − Z may go to the highly-
excited isovector monopole resonance (IVMR) since the
IAS and IVMR get mixed mainly by the Coulomb mean
field]. Similarly, the second-leg Fermi transition dominantly
populates the double IAS (DIAS) in the final nucleus. Due to
the isotensor part of the Coulomb interaction [which also gives
the only contribution to the double commutator (2)], the final
g.s. gets an admixture of the DIAS where the corresponding

mixing m.e. is ⟨0f |DIAS⟩ = −⟨0f |V̂ t
C |DIAS⟩

EDIAS
, with EDIAS ≈

2ω̄IAS. Thereby, one gets ⟨0f |T̂ −|IAS⟩ ̸= 0.
Other quantitative arguments for the dominance of the IAS

in the sum (4) follow from the representation of the double
commutator:

[
T̂ −,

[
T̂ −, V̂ t

C

]]
= V̂ t

C(T̂ −)2 + (T̂ −)2V̂ t
C − 2T̂ −V̂ t

CT̂ −.

It is clear that the first term V t
C(T −)2 dominates the m.e.

⟨0f |[T̂ −, [T̂ −, V̂ t
C]]|0i⟩, since the other m.e., because of

T̂ +|0f ⟩ ≈ 0 (with a small deviation from zero originating
from an isospin symmetry violation effect, caused mainly
by the Coulomb mean field), contain additional suppres-
sion as compared with the leading term ⟨0f |V̂ t

C(T̂ −)2|0i⟩ =
⟨0f |V̂ t

C |DIAS⟩⟨DIAS|(T̂ −)2|0i⟩.
Thus, M0ν

F is determined by the amplitude of the dou-
ble Fermi transition via the IAS in the intermediate nu-
cleus into the ground state of the final nucleus where
the second Fermi transition amplitude is due to an ad-
mixture of the DIAS in the final nucleus to the ground
state of the parent nucleus: ⟨0f |T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩ =
⟨0f |DIAS⟩⟨DIAS|T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩. Finally, one can
write

M0ν
F ≈ − 2

e2
ω̄IAS⟨0f |T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩. (5)

Therefore, the total M0ν
F can be reconstructed according

to Eq. (5), if one is able to measure the &T = 2 isospin-
forbidden m.e. ⟨0f |T̂ −|IAS⟩, for instance in charge-exchange
reactions of the (n, p)-type (also the same m.e. determines
M2ν

F , but it would be much more difficult to extract it). Using
the QRPA calculation results for M0ν

F [10,11], this m.e. can
roughly be estimated as ⟨0f |T̂ −|IAS⟩ ∼ 0.005, i.e., about a
thousand times smaller than the first-leg m.e. ⟨IAS|T̂ −|0i⟩ ≈√

N − Z. This strong suppression of ⟨0f |T̂ −|IAS⟩ reflects the
smallness of the isospin violation in nuclei. The IAS has been
observed as a prominent and extremely narrow resonance and
its various features have well been studied by means of (p,n),
(3He,t) and other charge-exchange reactions, see, e.g., [18].
This gives us hope that a measurement of ⟨0f |T̂ −|IAS⟩ in
the (n,p) charge-exchange channel might be possible. More
generally, a measurement by whichever experimental mean of
the &T = 2 admixture of the DIAS in the final ground state
would be enough to determine M0ν

F .
A qualitative analysis of the physics involved in calculations

of M0ν
F can be conducted further. One can define an operator

V̂ t
C = e2

8R̄

∑
ab T

(2)
ab which is obtained by the substitution of 1

rab
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NME from experiments

• Recently, the measurement of DGT for determinations of 
double beta decay matrix elements are proposed 

• What they found in shell model calculations, 

Shimizu 18’

interactions have been tested in nuclear spectroscopic
studies and reproduce experimental two-neutrino ββ decay
matrix elements and GT strengths to low-lying states with a
renormalization of the στ operator [22,66–68]. Figure 4
shows a simple linear relation between the DGT and 0νββ
decay matrix elements, valid up to M0ν ≃ 5. When taking
nuclear states truncated in the seniority basis (using the
code NATHAN [48]), the same linear relation extends to
M0ν ≃ 10. The correlation is also common to calculations
in one or two major shells for results in Fig. 4(a).
Furthermore, Fig. 4 compares the shell model results with

the nonrelativistic energy-density functional (EDF) ones for
ββ decay emitters and cadmium isotopes from Ref. [24]. The
two many-body approaches follow a quite similar correla-
tion. This is very encouraging given the marked differences
between the shell model and EDF M0ν values [70]. On the
contrary, the quasiparticle random-phase approximation
(QRPA) calculations for ββ decay emitters from Ref. [69]
give smallMDGT ≲ 0.4matrix elements independently of the
associated 0νββ decay NME values.

In order to understand the connection between the two
processes, Fig. 5(a) shows the matrix element distributions
as a function of the distance between the transferred or
decaying nucleons [71]. 136Xe is chosen as an example.
Both matrix elements are dominated by short internucleon
distances. In the case of DGT transitions this is because
the intermediate- and long-range contributions cancel to a
good extent. Radial distributions in the other DGT matrix
elements we have studied can be somewhat different, but
the approximate cancellation between intermediate and
long internucleon distances is systematically observed.
By contrast, Fig. 5(b) shows that the momentum transfers
are quite different, vanishing for DGT transitions and
peaking around 100 MeV in 0νββ decay.
The short-range character of both DGT and 0νββ decay

matrix elements can explain the simple linear relation
between them. References [72,73] showed that if an
operator only probes the short-range physics of low-
energy states, the corresponding matrix elements factorize
into a universal operator-dependent constant times a state-
dependent number common to all short-range operators.
A linear relation between the DGT and 0νββ decay matrix
elements follows. Our correlation depends moderately on
the mass region probably because of the approximate
cancellation of intermediate- and long-range contributions
in the DGT matrix elements. This explanation is consistent
with the different pattern of the QRPA results, as QRPA
DGT transitions do not show any cancellation between
intermediate and long internucleon distances [69], contrary
to the shell model.
Another difference between shell model and QRPA

DGT matrix elements appears when Eq. (6) is evaluated
introducing a complete set of intermediate states. While in
the QRPA intermediate 1þ states up to 15 MeV can be
relevant [69], typically canceling low-energy contributions,
in the shell model the impact of 1þ states beyond 8 MeV is
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FIG. 4. Correlation between the 0νββ decay NME M0ν and the
DGT matrix element MDGT. (a) Calcium (red), titanium (blue),
and chromium (yellow) isotopes calculated with the shell model
GXPF1B (squares) and KB3G (circles) interactions, compared to
the EDF 48Ca result [24] (green star). (b) Germanium (red),
selenium (blue), tin (orange), tellurium (purple), and xenon (light
blue) shell model results (filled symbols) calculated with the
interactions inRefs. [46,63–65], eachone representedby a different
symbol. Compared are EDF [24] (green stars) and QRPA [69]
(black crosses) results for ββ emitters and cadmium EDF values.
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interactions have been tested in nuclear spectroscopic
studies and reproduce experimental two-neutrino ββ decay
matrix elements and GT strengths to low-lying states with a
renormalization of the στ operator [22,66–68]. Figure 4
shows a simple linear relation between the DGT and 0νββ
decay matrix elements, valid up to M0ν ≃ 5. When taking
nuclear states truncated in the seniority basis (using the
code NATHAN [48]), the same linear relation extends to
M0ν ≃ 10. The correlation is also common to calculations
in one or two major shells for results in Fig. 4(a).
Furthermore, Fig. 4 compares the shell model results with

the nonrelativistic energy-density functional (EDF) ones for
ββ decay emitters and cadmium isotopes from Ref. [24]. The
two many-body approaches follow a quite similar correla-
tion. This is very encouraging given the marked differences
between the shell model and EDF M0ν values [70]. On the
contrary, the quasiparticle random-phase approximation
(QRPA) calculations for ββ decay emitters from Ref. [69]
give smallMDGT ≲ 0.4matrix elements independently of the
associated 0νββ decay NME values.

In order to understand the connection between the two
processes, Fig. 5(a) shows the matrix element distributions
as a function of the distance between the transferred or
decaying nucleons [71]. 136Xe is chosen as an example.
Both matrix elements are dominated by short internucleon
distances. In the case of DGT transitions this is because
the intermediate- and long-range contributions cancel to a
good extent. Radial distributions in the other DGT matrix
elements we have studied can be somewhat different, but
the approximate cancellation between intermediate and
long internucleon distances is systematically observed.
By contrast, Fig. 5(b) shows that the momentum transfers
are quite different, vanishing for DGT transitions and
peaking around 100 MeV in 0νββ decay.
The short-range character of both DGT and 0νββ decay

matrix elements can explain the simple linear relation
between them. References [72,73] showed that if an
operator only probes the short-range physics of low-
energy states, the corresponding matrix elements factorize
into a universal operator-dependent constant times a state-
dependent number common to all short-range operators.
A linear relation between the DGT and 0νββ decay matrix
elements follows. Our correlation depends moderately on
the mass region probably because of the approximate
cancellation of intermediate- and long-range contributions
in the DGT matrix elements. This explanation is consistent
with the different pattern of the QRPA results, as QRPA
DGT transitions do not show any cancellation between
intermediate and long internucleon distances [69], contrary
to the shell model.
Another difference between shell model and QRPA

DGT matrix elements appears when Eq. (6) is evaluated
introducing a complete set of intermediate states. While in
the QRPA intermediate 1þ states up to 15 MeV can be
relevant [69], typically canceling low-energy contributions,
in the shell model the impact of 1þ states beyond 8 MeV is
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NMEs from experiments

• The idea of EM transitions from DIAS to ground states 
has been formulated with shell model recently Romeo 21’2
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FIG. 1. Correlation between 0⌫�� (M0⌫��) and double-
magnetic dipole [M��(M1M1)] NMEs. In the y-axis , ↵ is an
isospin factor, see the text. Top panel: Results for 46�58Ti,
50�58Cr and 54�60Fe obtained with the KB3G (circles) and
GXPF1B (diamonds) e↵ective interactions. Bottom panel:
Results for 72�76Zn, 74�80Ge, 76�82Se, 82,84Kr obtained with
GCN2850 (circles), JUN45 (diamonds) and JJ4BB (trian-
gles); and for 124�132Te, 128�134Xe and 134,136Ba calculated
with the GCN5082 (circles) and QX (diamonds) interactions.

lower panel covers twenty five nuclei comprising zinc, ger-
manium, selenium, krypton, tellurium, xenon and bar-
ium isotopes with 72  A  136. The correlation is
independent on the nuclear interaction used.

Second-order EM decays are naturally suppressed with
respect to first-order ones. Nevertheless, �� transitions
have been measured between 0+ first-excited states and
GSs, where single-� decay is forbidden [51–53], and, re-
cently, among general nuclear states in competition with
� transitions [54, 55]. Future DIAS to GS �� decay mea-
surements, combined with the good linear correlation be-
tween NMEs presented in this work, show as a promising
tool to give insights on 0⌫�� NMEs.

Electromagnetic DIAS to GS transitions. The �� de-
cay of a nuclear excited state is an EM process where two
photons are emitted simultaneously:

Ni(pi) �! Nf (pf ) + ��(k) + ��0(k0) , (1)

where Ni, Nf are the initial and final nuclear states with
four-momenta pi and pf , respectively, and photons have

four-momenta k, k0 and helicities �,�0.
The theoretical framework of nuclear two-photon de-

cay is presented in detail in Refs. [52, 56, 57]. The non-
relativistic interaction Hamiltonian is given by

ĤI =

Z
d4x Ĵµ(x)A

µ(x) (2)

+
1

2

Z
d4x d4y B̂µ⌫(x, y)A

µ(x)A⌫(y) ,

where Aµ(x) denotes the EM field, Ĵµ(x) the nuclear cur-

rent, and B̂µ⌫(x, y) is a contact (seagull) operator which
represents intermediate nuclear-state excitations not cap-
tured by the nuclear model, such as nucleon-antinucleon
pairs. Perturbation theory up to second order in the pho-
ton field leads to the transition amplitudes

M(1) = �(k0 + k00 + Ef � Ei) (3)

⇥
X

n

Z
d3x d3y "⇤µ�(k)"

⇤
⌫�0(k0) e�i(k·x+k

0·y)

⇥
"
hf | Ĵµ(x) |ni hn| Ĵ⌫(y) |ii

Ei � k00 � En + i✏
+
hf | Ĵ⌫(y) |ni hn| Ĵµ(x) |ii

Ei � k0 � En + i✏

#
,

M(2) = �(2⇡)�(k0 + k00 + Ef � Ei) (4)

⇥
Z

d3x d3y "⇤µ�(k)"
⇤
⌫�0(k0)e�i(k·x+k

0·y) hf | B̂µ⌫(x,y) |ii ,

where "µ�(k) is the photon polarization vector. The ini-
tial (|ii), intermediate (|ni) and final (|fi) nuclear states
have energies Ei, En and Ef , respectively. The am-
plitude M(2) can be neglected for DIAS to GS transi-
tions, in the absence of subleading two-nucleon currents,
because it involves a one-nucleon operator in isospin
space [52].
It is very useful to perform a multipole decomposition

of the �� amplitude, because nuclear states have good
angular momentum. The expansion involves electric (E)
and magnetic (M) multipole operators with angular mo-
mentum L, denoted asX. The transition amplitude sums
over multipoles, which factorize into a geometrical (phase
space) factor and the generalized nuclear polarizability,
PJ , containing all the information on the nuclear struc-
ture and dynamics [52]:

PJ(X
0X; k0, k

0
0) = 2⇡(�1)Jf+Ji

p
(2L+ 1)(2L0 + 1) (5)

⇥
X

n,Jn

"(
L L0 J

Ji Jf Jn

)
hJf || eO(X)||JnihJn|| eO(X 0)||Jii

En � Ei + k00

+ (�1)Y
(
L0 L J

Ji Jf Jn

)
hJf || eO(X 0)||JnihJn|| eO(X)||Jii

En � Ei + k0

#
,

where the 6j-symbols depend on the total angular mo-
menta of the initial, intermediate, and final states Ji,
Jn, Jf and Y = J � L � L0. The reduced matrix ele-
ments of the EM multipole operators involve the photon

4

FIG. 3. Di↵erent contributions to the numerator NME M̂��

for several nuclei: total (T), spin M̂��
ss (ss), orbital M̂��

ll (ll)

and interference M̂��
ls (ls) terms.

when available—for E1. Using these experimental ener-
gies modifies M��(M1M1) results by less than 5%.

Results. With these ingredients we evaluate Eq. (10).
Figure 2 shows M��(M1M1) as a function of the exci-
tation energy of the intermediate states, for nuclei cov-
ering the three configuration spaces: 48Ti, 82Se and
128Te. The Lanczos strength function gives converged
results to ⇠ 1% after 50 � 100 iterations. Figure 2
illustrates that, in general, intermediate states up to
⇠ 15 MeV can contribute to the double-magnetic dipole
NME, and that only a few states dominate each tran-
sition. The comparison between weak and EM decays
needs to take into account that while 0⌫�� changes N
and Z by two units, they are conserved in �� decay.
This is achieved by comparing isospin-reduced NMEs or,
alternatively, by including the ratio of Clebsch-Gordan
coe�cients dictated by the Wigner-Eckart theorem [71]:

↵ =
q

3
2C

Tf ,2,Tf+2
Tf ,2,Tf+2/C

Tf ,2,Tf+2
Tf ,0, Tf

= 1
2

p
(2 + Tf )(3 + 2Tf ).

Figure 1 shows the good linear correlation between
0⌫�� NMEs and double-magnetic dipole NMEs obtained
with bare spin and orbital g-factors. We observe essen-
tially the same correlation when using e↵ective g-factors
that give slightly better agreement with experimental
magnetic dipole moments and transitions: gsi (e↵) =
0.9gsi , glp(e↵) = glp + 0.1, gln(e↵) = gln � 0.1 in the pf

shell [72]; and gsi (e↵) = 0.7gsi for pfg nuclei [73].
The slope of the linear correlation between �� and

0⌫�� NMEs in Fig. 1 depends mildly on the mass num-
ber, being larger in the pf shell than for pfg and sdgh

nuclei. This distinct behaviour is due to the energy de-
nominator in M��(M1M1): when only the numerator
in Eq. (10) is considered, M̂�� , the same linear correla-
tion is common to all nuclei. This is consistent with the
general behaviour illustrated by Fig. 2: the intermediate
states that contribute more to M��(M1M1) lie system-
atically at lower energies in pf -shell nuclei, compared to
A � 72 systems. In fact, the ratio of average energy of
the dominant states contributing to M��(M1M1) in the

ss
ll
ls
T
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FIG. 4. Decomposition of the 136Ba numerator NME M̂�� , in
terms of the two-nucleon angular momenta J : total (T), spin
M̂��

ss (ss), orbital M̂��
ll (ll) and interference M̂��

ls (ls) parts.

pf shell over the pfg�sdgh spaces matches very well the
ratio of the slopes in the top and bottom panels of Fig. 1.

We can gain additional insights on the ���0⌫�� corre-
lation by decomposing the double-magnetic dipole NME
into spin, orbital and interference parts. Since the en-
ergy denominator plays a relatively minor role, we fo-
cus on the changes in the numerator matrix element:
M̂�� = M̂��

ss + M̂��
ll + M̂��

ls . Figure 3 shows the de-
composition for the �� decay of several nuclei. In some
cases like 72Zn, the spin part dominates. Here, since M̂��

ss

is proportional to the double Gamow-Teller operator, a
very good correlation with 0⌫�� is expected [40]. In con-
trast, the orbital M̂��

ll part dominates in 134Xe or 136Ba,
sdgh nuclei with an l = 5 orbital. Remarkably, these
nuclei follow the common trend in Fig. 1, which means
that the correlation with 0⌫�� decay is not limited to
operators driven by the nuclear spin. The interference
M̂��

ls is generally smaller, and can be of di↵erent sign to
the dominant terms. In fact, Fig. 3 also shows that the
spin and orbital contributions to �� decay always have
the same sign, preventing a cancellation that would blur
the correlation with 0⌫�� decay.

Figure 4 investigates further the relation between spin
and orbital �� contributions, decomposing the NMEs in
terms of the two-body angular momenta J of the two
nucleons involved in the transition. Analogously to 0⌫��
NMEs [17, 18], M̂�� is dominated by the contribution
of J = 0 pairs, partially canceled by that of J > 0
ones. This behaviour is common to M̂��

ss and M̂��
ll , with

a more marked cancellation in the spin part, as expected
due to the spin-isospin SU(4) symmetry of the isovector
spin operator [22, 74]. The J = 0 dominance suggests
that spin and orbital S = L = 0 pairs are the most
relevant in �� DIAS to GS transitions, implying that
s1s2 = (S2�3/2)/2 < 0, and likewise l1l2 < 0. Since the
spin and orbital isovector g-factors also share sign, the
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• Above results has a similar nucleon pair structure as double 
beta decay 
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changing (p,t) reactions
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FIG. 2: (Color online) Contributions of the transforming neutron pair with different angular momenta Jπ to the total M0ν

calculated within the QRPA and different basis sizes for the 0νββ decay 82Se→82Kr. The left bar is calculated with the same
basis of four levels, 1p3/2, 0f5/2, 1p1/2 and 0g9/2, used in the shell model calculations. The Ikeda Sum Rule (ISR) is exhausted
by 50%. The second bar from the left includes in addition one, the 1f7/2 level, of the two missing spin-orbit partners given
for the 82Se nucleus in ref. [9] for the shell model. The ISR is exhausted by 66%. The third bar from the left includes both
missing spin-orbit partners 0f7/2 and 0g7/2 amounting in total to 6 single-particle levels. The ISR is fulfilled by 100%. This
leads to the increase in the neutrinoless matrix element from 1.12 to 4.07. The right bar represents the QRPA result with 9
single-particle levels (1f7/2, 2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2, 1g7/2.). The matrix element gets only slightly increased
to 4.27. The spin-orbit partners are essential to fulfill the Ikeda Sum Rule (ISR). In all four QRPA calculations the QRPA
“renormalisation” factor gpp (given in the figure) of the particle-particle strength of the Bonn CD nucleon-nucleon interaction
is adjusted to reproduce the experimental 2νββ decay rates.

of the RPA is approximately correct, since the ring diagrams give the most important ground state correlations. The
contributions of seniority 6 and 10 to M0ν are suppressed compared to the others (see figure 4).
Figures 2 and 3 show the QRPA contributions of different angular momenta of the neutron pairs, which are changed

in proton pairs with the same angular momenta. In figure 2 the left bar is the result for 82Se obtained with the
single-particle basis 1p3/2, 0f5/2, 1p1/2 and 0g9/2 used in the SM. The ISR is exhausted by 50%. The second bar from
the left represents the result with addition of the 1f7/2 level. The ISR is exhausted by 66%. The third bar from the
left shows the result obtained by inclusion of both spin-orbit partners 0f7/2 and 0g9/2 missing in the four level basis.
The ISR is 100% fulfilled. For the right bar the basis is increased to 9 single-particle levels for neutrons and protons
(0f7/2, 1p3/2, 0f5/2, 1p1/2, 0g9/2, 1d5/2, 2s1/2, 1d3/2, 0g7/2).
For 128Te in figure 3 the left bar is calculated with the same five single-particle levels, 0g7/2, 1d5/2, 2s1/2, 1d3/2

and 0h11/2, used in the shell model calculations. The middle bar represents the results by inclusion in addition the
missing spin-orbit partners 0g9/2 and 0h9/2, with 7 levels in total. The ISR is 100% fulfilled. This strongly increases
the 0νββ matrix element from 1.37 to 3.41. The right bar is the QRPA result with 13 single-particle levels including
all the states from the N = 3 (p, f) and the N = 4 (s, d, g) shells and the four additional levels 0h11/2, 0h9/2, 1f7/2
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Fig. 4. Left panel: Measured ground state 138Ba(p, t) cross sections overlayed with absolute values obtained from the shell model/Fresco calculations described in the text. 
Right panel: Running sum of experimental (p, t) cross sections at θlab = 5◦ , compared with the calculated values. The grey band represents the experimental uncertainties 
from Table 2. The orange band includes a 10% uncertainty due to multi-step contributions and an overly conservative spread arising from the use for different OMP parameters 
in the DWBA analysis. The latter dominates the total uncertainty.

Fig. 5. Left panel: Measured ground state 138Ba(p, t) cross sections overlayed with absolute values obtained from shell model/Fresco calculations that incorporated core-
polarization corrections as described in the text. Right panel: Running sum of experimental (p, t) cross sections at θlab = 5◦ , compared with calculated values obtained after 
core-polarization effects are taken into account. The uncertainty bands are the same as described in the caption for Fig. 4.

states are also found to agree reasonably well with experiment, 
particularly for the GCN50:82 Hamiltonian. This agreement did not 
significantly improve on making small adjustments of the single-
particle energies and pairing strengths of the Hamiltonians.

In the final part of our analysis we used these results to bench-
mark NME calculations for 136Xe 0νββ decay. This was based on 
the arguments presented in Ref. [71], where it was shown that 
the 0νββ decay NME for a parent nucleus with mass number A
can be expanded as a sum over states in an intermediate nucleus 
with mass number (A −2). For the case of 136Xe, one can similarly 
evaluate the NME by summing over the products of the TNA for 
two-neutron removal to 134Xe, the TNA for two-proton addition to 
136Ba, and the two-body matrix element for the double-beta decay 
operators (cf. Eq. (9) in Ref. [71]). The most significant contribu-
tion to the NME is through the 0+ ground state in the 134Xe, while 
J > 0 intermediate states mainly cancel the $ J = 0 term [71]. This 
is similar to other calculations [35,72] that separate the NME in 
terms of nucleon pairs coupled to angular momentum and parity 
Jπ = 0+ and Jπ ≠ 0+ , where the J > 0 contributions predomi-
nantly cancel the leading Jπ = 0+ term (see Fig. 1 in Ref. [35]).

The 136Xe → 134Xe transition described above is expected to 
be very similar to 138Ba → 136Ba. This is because both 136Xe and 
138Ba are singly closed shell, nearly spherical nuclei at N = 82. Fur-
thermore, theory calculations predict the 134Xe and 136Ba ground 
states to have similar structure [40]. This is supported by strong 
empirical evidence. If we examine the low-lying levels in these 

nuclei, their 2+
1 states have very similar excitation energies and 

B(E2; ↑) values [73]. Additional comparison, after including recent 
results from (n, n′γ ) experimental work [74], shows that the ener-
gies of the 2+

2 , 2+
3 , 0+

2 , 4+
1 , 4+

2 and 7−
1 states are also very similar 

in both nuclei. Therefore, the low-lying level schemes in 134Xe 
and 136Ba are nearly identical. This similarity allows a benchmark-
ing of 136Xe 0νββ decay NME calculations using our 138Ba(p, t)
data. As described below, on the basis of this benchmarking we 
can evaluate a revised value for the dominant Jπ = 0+ Gamow-
Teller (GT) component of the NME. This is done by first calculating 
the NME through the Jπ = 0+ ground state in 134Xe, both with 
and without the core-polarization corrections to the TNA. For the 
former we chose expanded sets of TNA, for both (neutron re-
moval and proton addition) parts of the calculation, with the 2n
removal part being the one that better reproduces our measured 
138Ba(p, t) cross section. The ratio of the results was determined 
to be R = 1.58, which is the expected enhancement in the NME 
due to core-polarization. Next we performed a more rigorous five-
orbital valence space ISM calculation of the NME (for light neutrino 
exchange) with the sn100t Hamiltonian, as in Ref. [12]. On using 
the CD-Bonn potential [75] for two-nucleon short range correla-
tions (SRC) and further including higher-order contributions (HOC) 
due to induced nucleon currents [76], we determine the matrix el-
ement to be M0ν

GT ( Jπ = 0+) = 5.67. Finally, on incorporating the 
above enhancement due to core-polarization effects, we revise the 
NME to M0ν

GT ( Jπ = 0+) = R × 5.67 = 8.96.
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Conclusion

• New formalism of double beta decay based on SMEFT 
frame has been developed 

• The requirements of NME calculations are urgent for new 
physics survey 

• Deviations among traditional many-body approaches are 
large and we are trying to understand the reason 

• There are also efforts of constraining the NMEs from 
experiment side



Thanks for your attention


